Automation Systems Drive Solutions

Controls
Inverter
Motoren
Getriebe
Engineering Tools

Inhaltsverzeichnis L-force Katalog

Jber Lenze		Lenze macht vieles einfach für Sie.	
		Aus Prinzip: Immer die passenden Produkte.	
		L-force Produktportfolio	
Automation Systems		Controller-based Automation	1.1
•		Drive-based Automation	1.2
 Prive Solutions		HighLine Aufgaben	2.1
Tive Solutions		StateLine Aufgaben	2.2
		BaseLine Aufgaben	2.3
controls	Visualisierung	Panel PC v800	3.1
		Monitor v200	3.2
	Cabinet Controller	Controller 3200 C	3.3
		Controller c300	3.4
	Panel Controller	Controller p500	3.5
		Controller p300	3.6
	ı	I/O-System 1000	3.7
 nverter	dezentral	Inverter Drives 8400 protec	4.1
		Inverter Drives 8400 motec	4.2
	Cabinet	Servo Drives 9400 HighLine	4.3
	··	Inverter Drives 8400 TopLine	4.4
		Servo-Inverter i700	4.5
		Inverter Drives 8400 HighLine	4.6
		Inverter Drives 8400 StateLine	4.7
		Inverter Drives 8400 BaseLine	4.8
Motoren	Servomotoren	Servo-Synchronmotoren MCS	5.1
		Servo-Synchronmotoren MCM	5.2
		Servo-Synchronmotoren MD□KS	5.3
		Servo-Asynchronmotoren MQA	5.4
		Servo-Asynchronmotoren MCA	5.5
	Drehstrommotoren	IE3-Drehstrommotoren m500	5.6
		inverteropt. Drehstrommotoren MF	5.7
		IE2-Drehstrommotoren MH	5.8
		IE1-Drehstrommotoren MD	5.9
		Lenze Smart Motor m300	5.10
		IE3-Drehstrommotoren m200	5.11
		IE1/2-Drehstrommotoren Basic MD/MH	5.12
 ietriebe	Axialgetriebe	Planetengetriebe g700-P	6.1
	,	Planetengetriebe MPR/MPG	6.2
		Stirnradgetriebe g500-H	6.3
		Flachgetriebe g500-S	6.4
	Winkelgetriebe	Kegelradgetriebe g500-B	6.5
	Motordaten	Zuordnung siehe oben	6.6
ngineering Tools		Navigator	7.1
		Drive Solution Designer	7.2
		Drive Solution Catalogue	7.3
		Engineer	7.4
		PLC Designer	7.5
		VisiWinNET®	7.6
		EASY Starter	7.7

Lenze macht vieles einfach für Sie.

Wir erarbeiten gemeinsam mit Ihnen die beste Lösung und setzen Ihre Ideen mit Begeisterung in Bewegung. Ganz gleich, ob bei der Optimierung einer bestehenden oder der Entwicklung einer neuen Maschine. Wir streben nach Einfachheit und suchen darin die Perfektion. Das steckt in unserem Denken, in unseren Dienstleistungen und in jedem Detail unserer Produkte. So einfach ist das!

1

Ideen entwickeln

Sie wollen die beste Maschine bauen und haben schon erste Ideen dafür? Dann bringen Sie diese mit uns zu Papier: angefangen bei kleinen Innovationsschritten im Detail bis hin zu komplett neuen Maschinen. Gemeinsam entwickeln wir ein auf Ihre Anforderungen abgestimmtes, intelligentes und nachhaltiges Konzept.

4

Maschinen herstellen

Funktionsvielfalt im Einklang: Als einer der wenigen Komplettanbieter können wir Ihnen für jede Maschinenaufgabe genau die Produkte liefern, die Sie auch wirklich benötigen – nicht mehr und nicht weniger. Hierfür steht unser L-force Produktportfolio, eine konsistente Plattform für die Realisierung von Antriebs- und Automatisierungsaufgaben.

2

Konzepte erstellen

In Ihren Maschinenaufgaben sehen wir willkommene Herausforderungen. Wir unterstützen Sie mit unserem umfangreichen Knowhow und liefern wertvolle Anstöße für Ihre Innovationen. Die einzelnen Bewegungs- und Steuerungsfunktionen betrachten wir dabei ganzheitlich und erarbeiten durchgängige Antriebs- und Automatisierungslösungen für Sie: so einfach wie möglich, so umfassend wie nötig.

5

Betrieb sichern

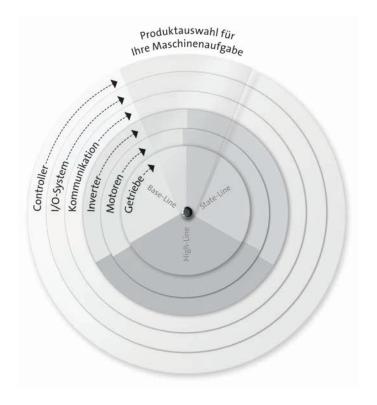
Produktivität, Zuverlässigkeit und täglich neue Spitzenleistungen – das sind unsere entscheidenden Erfolgsfaktoren für Ihre Maschine. Nach der Auslieferung bieten wir Ihnen durchdachte Service-Konzepte für einen dauerhaft sicheren Betrieb. Im Fokus steht hier die kompetente Unterstützung durch das exzellente Anwendungs-Knowhow unserer erfahrenen Spezialisten im Aftersales.

3

Lösungen erarbeiten

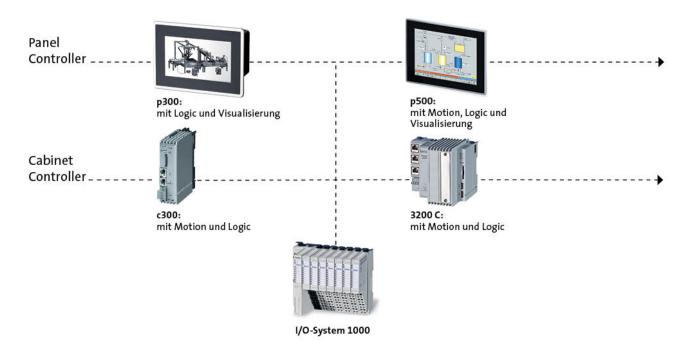
Unsere einfache Formel für zufriedene Kunden: Eine aktive Partnerschaft mit kurzen Entscheidungswegen und einem individuell abgestimmten Angebot. Auf Grundlage dieses einfachen Prinzips begegnen wir schon seit langem den immer spezieller werdenden Kundenbedürfnissen im Maschinenbau.

Aus Prinzip: Immer die passenden Produkte.

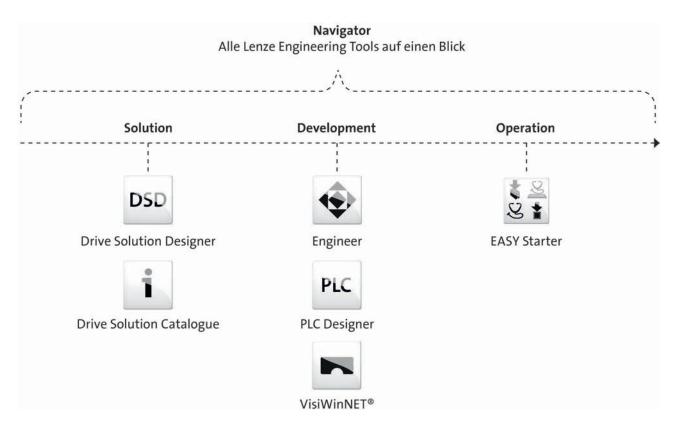

Das umfangreiche Lenze L-force Produktportfolio folgt einem ganz einfachen Prinzip. Denn die Funktionen unserer fein skalierten Produkte sind der Base-Line, State-Line oder High-Line zugeordnet.

Ihr bedeutender Vorteil: Dadurch erkennen Sie schnell, welche Produkte für Ihre Anforderungen die beste Lösung ergeben.

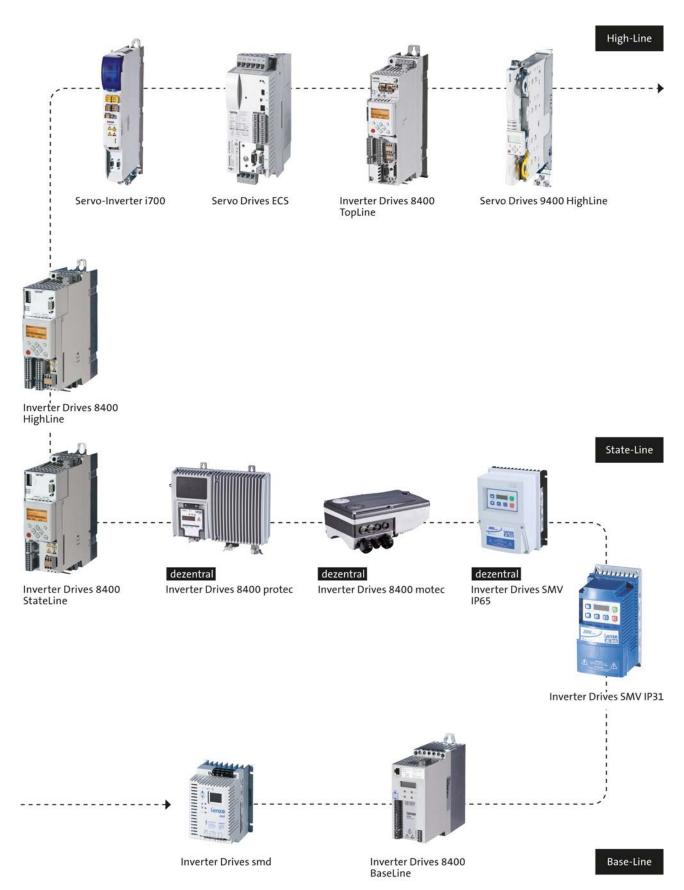
Starke Produkte mit großer Wirkung:


- Einfaches Handling
- Langlebige Qualität
- Zuverlässige Technologien am Puls der Zeit

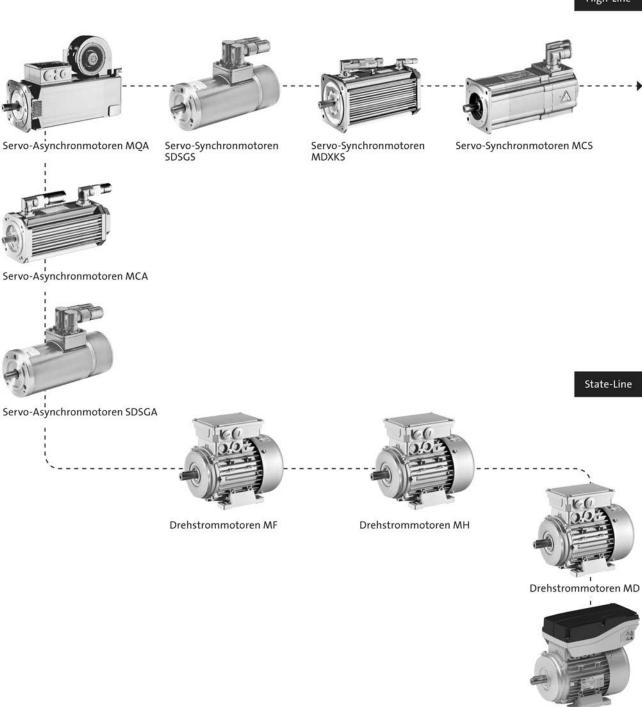
Lenze-Produkte werden in einem eigenen Testlabor auf Herz und Nieren überprüft. So garantieren wir Ihnen eine dauerhafte Qualität und lange Lebensdauer. Außerdem gewährleisten Ihnen fünf Logistikzentren die weltweite Verfügbarkeit und schnelle Lieferung Ihrer ausgewählten Lenze-Produkte. So einfach ist das!



Controls



Engineering Tools

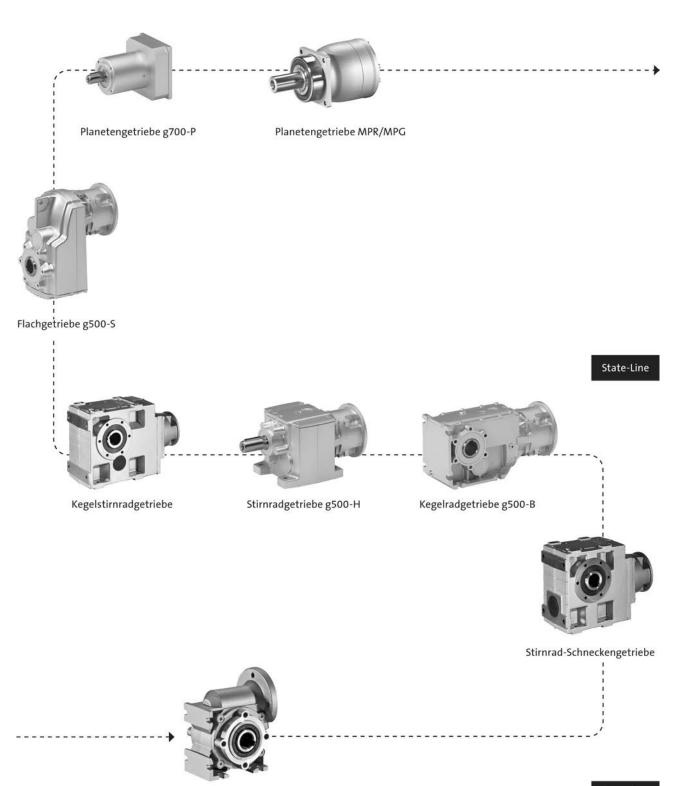

Inverter

Motoren

High-Line

Lenze Smart Motor m300

100


Drehstrommotoren Basic MD/MH

Base-Line

Getriebe

High-Line

Schneckengetriebe

Base-Line

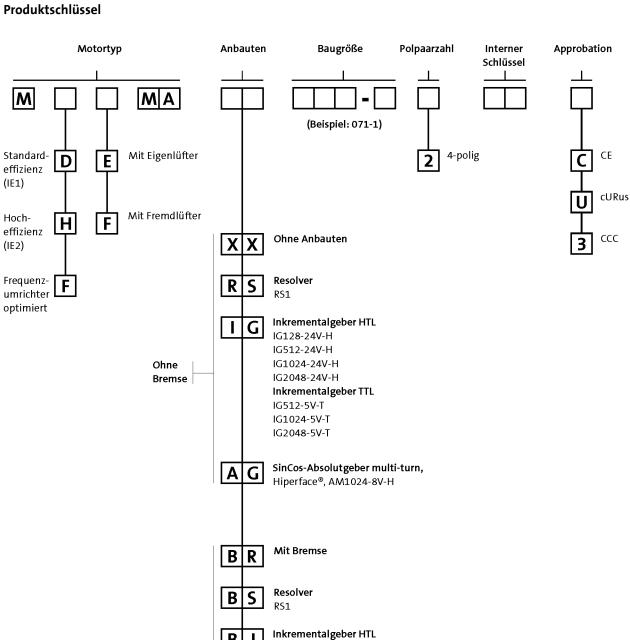
0.55 ... 22 kW

Inhalt

Allgemeines	Kurzzeichenlegende	5.7 - 4
	Produktschlüssel	5.7 - 5
	Produktinformationen	5.7 - 6
	Funktionen und Eigenschaften	5.7 - 7
	Zuordnung Motor – Inverter	5.7 - 10
	Dimensionierung	5.7 - 11
 Technische Daten	Normen und Einsatzbedingungen	5.7 - 13
	Zulässige Radial- und Axialkräfte	5.7 - 14
	Bemessungsdaten 120 Hz	5.7 - 17
	Abmessungen, eigenbelüftet (4-polig)	5.7 - 18
	Abmessungen, fremdbelüftet (4-polig)	5.7 - 24
	Abmessungen, Inverter 8400 motec	5.7 - 30
Zubehör	Federkraftbremse	5.7 - 31
	Rückführungen	5.7 - 43
	Fremdlüfter	5.7 - 45
	Temperaturüberwachung	5.7 - 47
	Klemmenkasten	5.7 - 49
	Steckverbinder	5.7 - 50
	Steckverbinder ICN	5.7 - 50
	Steckverbinder M12	5.7 - 55
	Steckverbinder HAN	5.7 - 56

Allgemeines

Kurzzeichenlegende


	Fo.1	lue I
η _{100 %}	[%]	Wirkungsgrad
η _{75 %}	[%]	Wirkungsgrad
η _{50 %}	[%]	Wirkungsgrad
cos ф		Leistungsfaktor
I _N	[A]	Bemessungsstrom
I _{max}	[A]	Max. Stromaufnahme
J	[kgcm²]	Massenträgheitsmoment
m	[kg]	Masse
Ma	[Nm]	Anlaufmoment
M _b	[Nm]	Kippmoment
M _{max}	[Nm]	Max. Drehmoment
M _N	[Nm]	Bemessungsdrehmoment
n _N	[r/min]	Bemessungsdrehzahl
P _N	[kW]	Bemessungsleistung
P _{max}	[kW]	Max. Leistungsaufnahme

U _{max}	[V]	Max. Netzspannung
U _{min}	[V]	Min. Netzspannung
U _{N, Δ}	[V]	Bemessungsspannung
U _{N, Y}	[V]	Bemessungsspannung

CE	Communauté Européenne
CSA	Canadian Standards Association
DIN	Deutsches Institut für Normung e.V.
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Norm
IEC	International Electrotechnical Commission
IM	International Mounting Code
IP	International Protection Code
NEMA	National Electrical Manufacturers Association
UL	Underwriters Laboratory Listed Product
UR	Underwriters Laboratory Recognized Product
VDE	Verband deutscher Elektrotechniker
CCC	China Compulsory Certificate
EAC	Zertifikat Zollunion Russland / Belarus / Kasachstan
cURus	Kombiniertes Prüfzeichen der UL für USA und Kanada
UkrSEPRO	Zertifikat für die Ukraine

5.7 - 4

В

В

Federkraft-

bremse

IG128-24V-H IG512-24V-H IG1024-24V-H

IG2048-24V-H

IG512-5V-T IG1024-5V-T IG2048-5V-T

Inkrementalgeber TTL

SinCos-Absolutgeber multi-turn,

Hiperface®, AM1024-8V-H

5.7 - 5 Lenze | V05-de_DE-08/2018

Allgemeines

Produktinformationen

Seit Langem sind Drehstrommotoren von Lenze in nahezu allen Industriebereichen etabliert. Aufbauend auf diese langjährige Erfahrung im Bereich der Antriebs- und Automatisierungstechnik wurde ein Motor entwickelt, der dafür sorgt, Ihren Ansprüchen an Produktivität, Qualität und Verfügbarkeit optimal gerecht zu werden. Die Drehstrommotoren der L-force-Reihe zeichnen sich vor allem durch den umfangreichen Baukasten aus. Eine Vielzahl von Optionen ermöglicht es Ihnen, die Antriebseigenschaften genau auf Ihre Applikation anzupassen. Wir nennen dies Rightsizing.

L-force Drehstrommotoren MF sind in einem Leistungsbereich von 0.55 ... 22 kW lieferbar und vollständig auf Inverterbetrieb optimiert.

Ihre Vorteile:

- Bis zu zwei Baugrößen kleiner als Standard-Drehstrommotoren
- Die Motoren übertreffen die Mindestwirkungsgrade der Effizienzklasse IE2
- Großer Drehzahlstellbereich: 1:24 (ohne Feldschwächung)
- · Dynamisch durch ein kleines Massenträgheitsmoment

Grundausführungen

- Mit den Bauformen B3, B5 und B14 sowie den nach IEC 60072-1 bzw. DIN EN 50347 standardisierten Abmessungen sind die Motoren universell einsetzbar.
- Die standardmäßig integrierten Temperatursensoren ermöglichen eine permanente Temperaturüberwachung und sind auf die Wärmeklasse F (155°C) der Motorwicklung abgestimmt.
- In der Basisausführung sind die Motoren durch die Schutzart IP55 den Umgebungsbedingungen angepasst.
- Bei schwierigen Einsatzbedingungen steht das Oberflächen- und Korrosionsschutzsystem zur Verfügung, das den Motor zuverlässig vor aggressiven Medien schützt.

Optionen

- Verschiedene Bremsengrößen jeweils mit mehreren Bremsmomenten verfügbar – lassen sich mit den Drehstrommotoren kombinieren
- Die LongLife-Ausführung der Bremse ermöglicht problemlos über 10×10^6 Schaltzyklen.
- Zur Drehzahl- und Positionserfassung ist der Anbau eines Resolvers sowie verschiedener Inkremental- und Absolutwertgeber möglich.
- Zur schnellen Inbetriebnahme sind die Motoren auch mit Steckverbindern für Leistungsanschlüsse, Bremse, Fremdlüfter und Rückführung verfügbar.
- Statt eines Eigenlüfters kann der Motor optional mit einem Fremdlüfter ausgestattet werden. Auch bei Drehzahlen unter 20 Hz ist dann keine Drehmomentreduzierung notwendig.
- Für Antriebsaufgaben in dezentralen Anwendungen kann der Motor mit dem auf den Klemmenkasten montierten Inverter motec bezogen werden.
- Die Motoren sind mit Approbationen nach cURus, GOST-R, CCC und UkrSepro erhältlich.

5 7

Allgemeines

Funktionen und Eigenschaften

Baugröße						
Motor		063	071	080	090	
Bauform			-			
		B3 B5 B14				
Wellenzapfen						
d x l	[mm]	11 x 23	14 x 30	19 x 40	24 x 50	
Federkraftbremse					I	
Ausführung		Standard- oder LongLife-Ausführung Reduziertes- oder Standard-Bremsmoment Mit Gleichrichter Mit Handlüfthebel Geräuscharm Standard- oder LongLife-Ausführung Reduziertes, Standard oder erhöhtes Brem Mit Gleichrichter Mit Gleichrichter Mit Handlüfthebel Geräuscharm			der erhöhtes Bremsmo- ent chrichter Ilüfthebel	
Rückführung						
Ausführung		Resolver Inkrementalgeber Absolutwertgeber (Multi-turn)				
Temperatursensor						
Thermokontakt		ТКО				
Temperaturfühler			PT1	.000		
Kaltleiter		PTC				
Motoranschluss						
Leistungsanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN10E Steckverbinder HAN modular				
Bremsenanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular Steckverbinder HAN10E				
Fremdlüfteranschluss		Klemmenkasten Steckverbinder ICN				
Rückführungsanschluss		Klemmenkasten Steckverbinder ICN				
Temperatursensoranschluss		Klemmenkasten TKO oder PTC bei Steckverbinder im Leistungsanschluss PT1000 bei Steckverbinder im Rückführungsanschluss				
Wellenlagerung						
Lage des Festlagers		Normmotoren (B3, B5, B14): B-Seite Motoren für Getriebe (Direktanbau): A-Seite				
Lagerart		Rillenkugellager mit	hochtemperaturbeständ	igem Fett, 2 Dichtscheibe	en bzw. Deckscheiben	
Farbe						
		unlackiert grundiert Lackierung in verschiedenen Korrosionsschutzausführungen nach RAL-Farben				

Allgemeines

Funktionen und Eigenschaften

Baugröße					
Motor		100	112	132	
Bauform		200		131	
		B3 B5		B3 B5	
		B14	63		
Wellenzapfen					
dxl	[mm]	28 x	60	38 x 80	
Federkraftbremse					
Ausführung		Standard- oder LongLife-Ausfüh- rung Reduziertes, Standard oder er- höhtes Bremsmoment Mit Gleichrichter Mit Handlüfthebel Geräuscharm	Reduziertes, Standard ode Mit Glei Mit Hand	Ausführung er erhöhtes Bremsmoment chrichter Ilüfthebel scharm	
Rückführung					
Ausführung			Resolver Inkrementalgeber Absolutwertgeber (Multi-turn)		
Temperatursensor			<u> </u>		
Thermokontakt			TKO		
Temperaturfühler			PT1000		
Kaltleiter			PTC		
Motoranschluss					
Leistungsanschluss				Klemmenkasten Steckverbinder HAN modular	
Bremsenanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular Steckverbinder HAN10E	Klemmenkasten	Klemmenkasten Steckverbinder HAN modular	
Fremdlüfteranschluss			Klemmenkasten Steckverbinder ICN		
Rückführungsanschluss			Klemmenkasten Steckverbinder ICN		
Temperatursensoranschluss		Klemmenkasten TKO oder PTC bei Steckverbinder im Leistungsanschluss PT1000 bei Steckverbinder im Rückführungsanschluss PT1000 bei Steckverbinder im Rückführungsanschluss			
Wellenlagerung					
Lage des Festlagers		Normmotoren (B3, B5, B14): B-Seite Motoren für Getriebe (Direktanbau): A-Seite			
Lagerart		Rillenkugellager mit hochtemperaturbeständigem Fett, 2 Dichtscheiben bzw. Deckscheiben			
Farbe			-		
		unlackiert grundiert Lackierung in verschiedenen Korrosionsschutzausführungen nach RAL-Farben			

5.7 - 8 Lenze | V05-de_DE-08/2018

5 7

Allgemeines

Funktionen und Eigenschaften

Oberflächen- und Korrosionsschutz

Um die Drehstrommotoren je nach Umgebungsbedingungen optimal zu schützen, stehen mit dem Oberflächen- und Korrosionschutzsystem (OKS) maßgeschneiderte Lösungen zur Verfügung.

Verschiedene Oberflächenbeschichtungen sorgen dafür, dass die Motoren auch bei hoher Luftfeuchtigkeit, Außenaufstellung oder athmosphärischen Verunreinigungen zuverlässig funktionieren. Der Farbton des Decklacks kann nach RAL Classic gewählt werden. Darüber hinaus sind die Drehstrommotoren auch unlackiert (ohne OKS) erhältlich.

Oberflächen- und Korrosions- schutzsystem	Anwendungen	Maßnahmen
OKS-G (Grundiert)	Abhängig vom nachträglich aufzubringenden Decklack	2K-PUR-Grundierung (grau)
OKS-S (Small)	StandardanwendungenInnenaufstellung in beheizten GebäudenLuftfeuchtigkeit bis 90%	Oberflächenbeschichtung entspr. Korrosivitätsklas- se C1 (gemäß EN 12944-2)
OKS-M (Medium)	 Innenaufstellung in unbeheizten Gebäuden Überdachte, geschützte Außenaufstellung Luftfeuchtigkeit bis 95 % 	Oberflächenbeschichtung entspr. Korrosivitätsklasse C2 (gemäß EN 12944-2)
OKS-L (Large) OKS-XL (extra Large)	 Außenaufstellung Luftfeuchtigkeit über 95 % Chemische Industrieanlagen Lebensmittelindustrie 	 Oberflächenbeschichtung entspr. Korrosivitätsklasse C3 (gemäß EN 12944-2) Lüfterhaube und B-Lagerschild zusätzlich grundiert Schrauben verzinkt Kabelverschraubungen mit Dichtringen Korrosionsstabile Bremse mit Abdeckring, nicht rostendem Reibblech und verchromter Ankerscheibe (auf Anfrage) Optionale Maßnahmen: Rezesse am Motor abgedichtet (auf Anfrage)

Aufbau der Oberflächenbeschichtung

Oberflächen- und Korrosions- schutzsystem	Korrosivitätsklasse	Oberflächenbeschichtung	Farbton
	DIN EN ISO 12944-2	Aufbau	
ohne OKS (unlackiert)			
OKS-G (Grundiert)		2K-PUR-Grundierung	
OKS-S (Small)	Vergleichbar mit C1	2K-PUR-Decklack	
OKS-M (Medium)	Vergleichbar mit C2		Standard: RAL 7012
OKS-L (Large) OKS-XL (extra Large)	Vergleichbar mit C3	2K-PUR-Grundierung 2K-PUR-Decklack	Optional: Nach RAL Classic möglich

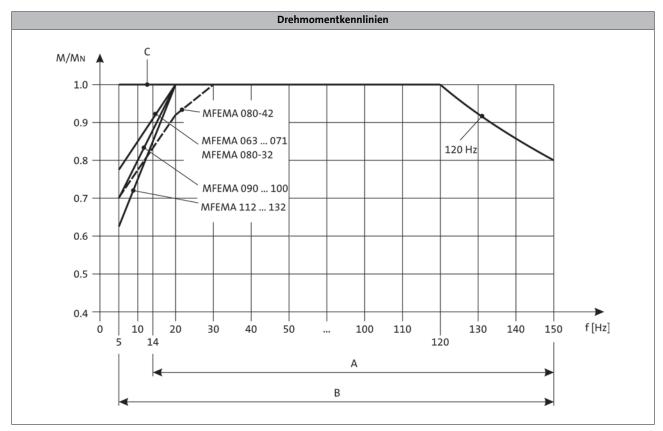
Lenze | V05-de_DE-08/2018 5.7 - 9

J./

Allgemeines

Zuordnung Motor – Inverter

Bemessungsfrequenz 120 Hz


- Dezentraler Inverter 8400 motec (E84DVB)
 Inverter Drives 8400 (E84AV)

Bemessungsleistung		Produktschlüssel	
	Motor	Umrid	chter
P _N			
[kW]			
0.55	MF□□□□□063-32	E84DVB□5514S□□□2□	E84AV
0.75	MF□□□□□063-42	E84DVB□7514S□□□2□	E84AV 🗆 🗆 7514 🗆 🗆
1.10	MF□□□□□071-32	E84DVB□1124S□□□2□	E84AV 🗆 🗆 1124 🗆 🗆
1.50	MF□□□□□071-42	E84DVB□1524S□□□2□	E84AV 🗆 🗆 1524 🗆 🗆
2.20	MF□□□□□080-32	E84DVB□2224S□□□2□	E84AV□□□2224□□□
3.00	MF□□□□□080-42	E84DVB□3024S□□□2□	E84AV
4.00	MF□□□□□090-32	E84DVB□4024S□□□2□	E84AV 4024
5.50	MF□□□□□100-12	E84DVB□5524S□□□2□	E84AV 🗆 🗆 5524 🗆 🗆
7.50	MF□□□□□100-32	E84DVB□7524S□□□2□	E84AV
11.0	MF□□□□□112-22		E84AV 🗆 🗆 1134 🗆 🗆
15.0	MF□□□□□132-12		E84AV□□□1534□□□
18.5	MF□□□□□132-22		E84AV 🗆 🗆 1834 🗆 🗆
22.0	MF□□□□□132-32		E84AV□□□2234□□□

5.7 - 10 Lenze | V05-de_DE-08/2018 Dimensionierung

Drehmomentreduzierung bei niedrigen Motorfrequenzen

Das Diagramm zeigt die motorbaugrößenabhängige Drehmomentreduzierung bei eigenbelüfteten Motoren unter Berücksichtigung des thermischen Verhaltens beim Betrieb am Inverter.

A = Betrieb mit Eigenlüfter und Bremse B = Betrieb mit Eigenlüfter und Bremsenansteuerung "Haltestromabsenkung"

▶ Die in diesem Katalog genannten technischen Daten der Motoren im Inverterbetrieb gelten für den Betrieb an einem Lenze-Inverter. Fragen Sie im Zweifelsfall den Hersteller des Inverters, ob das Gerät den Motor mit den genannten technische Daten (z.B. Stellbereich, Eckfrequenz) betreiben kann.

Für eine genaue Antriebsauslegung können Sie unsere Projektierungssoftware den Drive Solution Designer nutzen.

Mit dem Drive Solution Designer können Sie die Antriebsauslegung schnell und mit einer hohen Qualität ausführen. Die Software beinhaltet fundiertes und in der Praxis erprobtes Wissen über Antriebsanwendungen und elektromechanische Antriebskomponenten.

Bitte sprechen Sie Ihre zuständige Lenze Vertriebsgesellschaft an.

Lenze | V05-de_DE-08/2018 5.7 - 11

5.7

Allgemeines

5 7

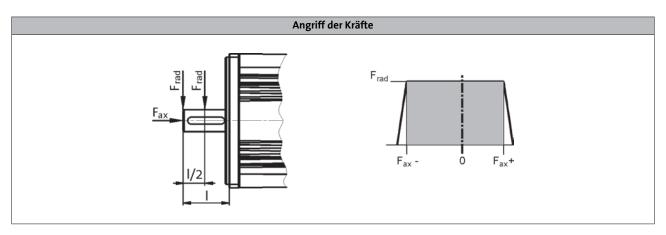
5.7 - 12

Technische Daten

Normen und Einsatzbedingungen

Schutzart			
EN 60529			IP55 1)
			IP65 ¹⁾
			IP66 ¹⁾
Konformität			
CE			Niederspannungsrichtlinie
			2006/95/EG
EAC			TP TC 004/2011 (TR ZU 004/2011)
Approbation			
			UkrSEPRO
ССС			GB Standard 12350-2009
CSA			CSA 22.2 No. 100
cURus			File-No. E210321
			UL 1004-1
			UL 1004-8
Wärmeklasse			
IEC/EN 60034-1; Ausnutzung			В
IEC/EN 60034-1; Isolationsaufbau (Lackdraht)			F
Min. Betriebs-Umgebungstemperatur			
	T _{opr,min}	[°C]	-20
Max. Betriebs-Umgebungstemperatur			
	T _{opr,max}	[°C]	40
Mit Leistungsreduzierung	T _{opr,max}	[°C]	60
Aufstellungshöhe			
über NN	H _{max}	[m]	4000
Max. Drehzahl			
	n _{max}	[r/min]	4500

¹⁾ Abweichende Schutzarten bei Ausführungen: Mit Bremse IP55 (mit Handlüfthebel IP54). Mit Resolver RS1 IP54. Mit HTL-Inkremental IG128-24V-H IP54.


5.7

Zulässige Radial- und Axialkräfte

► Kräfte bei mittlerer Drehzahl 2000 r/min.

Kraftangriff bei I/2

	Lagerlebensdauer L _{10h}											
		10000 h		20000 h			30000 h			50000 h		
	F _{rad} [N]	F _{ax,-}	F _{ax,+}	F _{rad} [N]	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+} [N]
063	600	-600	300	470	-480	180	410	-430	120	350	-370	70
071	740	-800	470	590	-630	300	510	-550	220	430	-470	140
080	960	-1090	580	770	-860	350	670	-760	250	570	-650	140
090	1050	-1160	630	840	-920	390	730	-800	280	620	-690	160
100	1490	-1490	910	1190	-1160	580	1050	-1010	430	890	-860	270
112	2250	-2330	1340	1790	-1830	840	1570	-1600	610	1330	-1360	370
132	3 3 0 0	-2150	1190	2640	-1670	710	2320	-1440	480	1970	-1210	250
160	3750	-2700	1520	3000	-2130	950	2640	-1830	670	2250	-1440	360
180	5620	-3270	1790	4500	-2580	1120	3960	-2210	790	3 3 7 5	-1750	420
200	5620	-3270	1790	4500	-2580	1120	3960	-2210	790	3 3 7 5	-1750	420
225	5 2 0 0	-3100	3900	3900	-2100	2900	3 3 0 0	-1300	2100	2650	-1000	1800

- ▶ Die Werte der Lagerlebensdauer L_{10h} beziehen sich auf eine mittlere Drehzahl von 2000 r/min und werden, abhängig von den Umgebungstemperaturen, zusätzlich durch die Fettgebrauchsdauer eingeschränkt.
- ▶ Die Angaben der Axialkräfte beziehen sich auf die max. Radialkraft bei entsprechender Lagerlebensdauer.

5 7

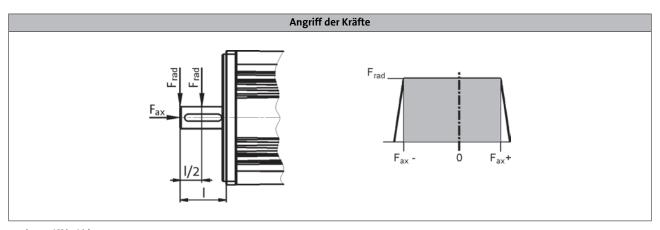
Technische Daten

Zulässige Radial- und Axialkräfte

► Kräfte bei mittlerer Drehzahl 2000 r/min.

Kraftangriff bei l

				Li	agerlebens	dauer L ₁₀	h					
		10000 h		20000 h			30000 h			50000 h		
	F _{rad}	F _{ax,-} [N]	F _{ax,+} [N]	F _{rad}	F _{ax,-} [N]	F _{ax,+}	F _{rad}	F _{ax,-} [N]	F _{ax,+} [N]	F _{rad}	F _{ax,-} [N]	F _{ax,+} [N]
063	400	-600	300	370	-480	180	320	-430	120	300	-370	70
071	680	-800	470	540	-630	300	470	-550	220	400	-470	140
080	880	-1090	580	700	-860	350	610	-760	250	520	-650	140
090	940	-1160	630	750	-920	390	660	-800	280	560	-690	160
100	1350	-1490	910	1080	-1160	580	940	-1010	430	800	-860	270
112	2040	-2330	1340	1620	-1830	840	1420	-1600	610	1210	-1360	370
132	3020	-2150	1190	2420	-1670	710	2120	-1440	480	1800	-1210	250
160	3410	-2700	1520	2730	-2130	950	2400	-1830	670	2050	-1440	360
180	4550	-3270	1790	3640	-2580	1120	3200	-2210	790	2730	-1750	420
200	4550	-3270	1790	3640	-2580	1120	3200	-2210	790	2730	-1750	420
225	4800	-3100	3900	3600	-2100	2900	3 0 0 0	-1300	2100	2400	-1000	1800


- ▶ Die Werte der Lagerlebensdauer L_{10h} beziehen sich auf eine mittlere Drehzahl von 2000 r/min und werden, abhängig von den Umgebungstemperaturen, zusätzlich durch die Fettgebrauchsdauer eingeschränkt.
- ▶ Die Angaben der Axialkräfte beziehen sich auf die max. Radialkraft bei entsprechender Lagerlebensdauer.

Technische Daten

Zulässige Radial- und Axialkräfte

► Kräfte bei mittlerer Drehzahl 3500 r/min.

Kraftangriff bei I/2

	Lagerlebensdauer L _{10h}											
	10000 h			20000 h			30000 h			50000 h		
	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}
	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]
063	500	-430	270	400	-330	180	350	-290	140	290	-240	90
071	610	-580	250	490	-490	130	430	-430	80	360	-360	30
080	800	-790	280	640	-640	130	560	-570	60	480	-500	0
090	880	-830	310	700	-670	150	610	-600	70	520	-520	0
100	1250	-1060	480	1000	-840	250	870	-740	150	740	-630	50
112	1870	-1680	700	1500	-1500	360	1310	-1190	200	1110	-1030	40
132	2750	-1400	440	2200	-1100	130	1700	-980	20			

Kraftangriff bei l

	Lagerlebensdauer L _{10h}											
	10000 h			20000 h			30000 h			50000 h		
	F _{rad}	F _{ax,-}	F _{ax,+} [N]	F _{rad}	F _{ax,-}	F _{ax,+} [N]	F _{rad}	F _{ax,-}	F _{ax,+} [N]	F _{rad}	F _{ax,-}	F _{ax,+} [N]
063	460	-410	260	370	-320	170	320	-280	130	270	-240	80
071	570	-560	230	450	-450	120	400	-400	70	330	-350	20
080	730	-750	250	580	-610	100	510	-550	40			
090	790	-790	270	630	-640	120	550	-570	50			
100	1120	-1000	420	900	-800	210	790	-700	120	670	-600	20
112	1690	-1600	610	1350	-1280	300	1190	-1140	150	1000	-1000	0
132	2520	-1300	330	2020	-1020	60	1300	-960	0			

- Die Werte der Lagerlebensdauer L₁₀ beziehen sich auf eine mittlere Drehzahl von 3500 r/min und werden, abhängig von den Umgebungstemperaturen, zusätzlich durch die Fettgebrauchsdauer eingeschränkt.
- ▶ Die Angaben der Axialkräfte beziehen sich auf die max. Radialkraft bei entsprechender Lagerlebensdauer.

5.7

Technische Daten

Bemessungsdaten 120 Hz

4-polige Motoren

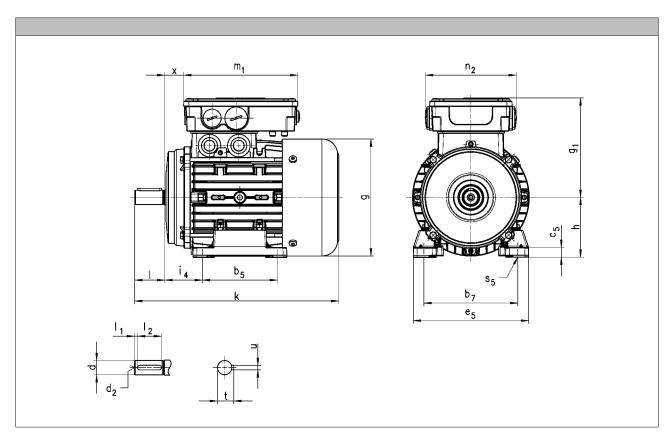
	P _N	n _N	U _{N, Δ}	I _{N, Δ}	U _{N, Y}	I _{N, Y}
			± 10 %		± 10 %	
	[kW]	[r/min]	[V]	[A]	[V]	[A]
MF□□□□□063-32	0.55	3440	200	3.20	345	1.80
MF□□□□□063-42	0.75	3400	210	4.00	370	2.30
MF□□□□□071-32	1.10	3490	200	5.50	345	3.20
MF□□□□□071-42	1.50	3450	205	6.80	360	3.90
MF□□□□□080-32	2.20	3500	200	9.10	345	5.30
MF□□□□□080-42	3.00	3480	210	11.4	370	6.60
MF□□□□□090-32	4.00	3480			370	8.50
MF□□□□□100-12	5.50	3525			340	12.9
MF□□□□□100-32	7.50	3515			375	15.9
MF□□□□□112-22	11.0	3530			370	23.5
MF□□□□□132-12	15.0	3560			370	31.2
MF□□□□□132-22	18.5	3560			360	39.0
MF□□□□□132-32	22.0	3550			380	44.5

	M _N	M _{max}	cos ф	η _{75 %}	η _{100 %}	J 1)	m 1)
	[Nm]	[Nm]		[%]	[%]	[kgcm²]	[kg]
MF□□□□□063-32	1.53	6.00	0.68	75.0	75.0	3.70	4.40
MF□□□□□063-42	2.11	8.00	0.69	79.6	79.6	3.70	4.40
MF□□□□□071-32	3.01	12.0	0.77	81.4	81.4	12.8	6.40
MF□□□□□071-42	4.15	16.0	0.80	82.8	82.8	12.8	6.40
MF□□□□□080-32	6.00	24.0	0.86	84.3	84.3	28.0	11.0
MF□□□□□080-42	8.20	32.0	0.86	85.5	85.5	28.0	11.0
MF□□□□□090-32	10.9	44.0	0.85	87.0	86.6	32.0	18.0
MF□□□□□100-12	14.9	60.0	0.81	87.9	87.7	61.0	26.5
MF□□□□□100-32	20.3	80.0	0.81	88.9	88.7	61.0	26.5
MF□□□□□112-22	29.7	120	0.78	89.8	89.8	107	38.0
MF□□□□□132-12	40.3	160	0.84	88.9	90.6	336	66.0
MF□□□□□132-22	49.6	200	0.84	89.9	91.2	336	66.0
MF□□□□□132-32	59.2	240	0.83	90.5	91.6	336	66.0

¹⁾ Ohne Zubehör

Lenze | V05-de_DE-08/2018 5.7 - 17

5.7


Technische Daten

Abmessungen, eigenbelüftet (4-polig)

Bauform B3

Motortyp												
			MFE	ΛΑΧΧ			MFEMABR					
	k [mm]	g [mm]	g ₁	x [mm]	m ₁	n ₂	k [mm]	g [mm]	g ₁	x [mm]	m ₁	n ₂
063	215	123	109	17			271	123	109	17		
071	246	139	118	24	136	103	297	139	118	24	136	103
080	272	156	132	25			345	154	132	25		
090	337	176	137	29	152	121	399	176	137	29	152	121
100	382	194	147	36	132	121	458	194	147	36	132	121
112	392	218	158	38			482	218	158	38		
132	497	258	187	51	194	125	576	258	187	51	194	125

Technische Daten

Abmessungen, eigenbelüftet (4-polig)

Bauform B3

Motortyp		
	MFEMARS	MFEMABS
	MFEMAIG	MFEMABI
	MFEMAAG	MFEMABA

	k	g	g 1	X	m ₁	n ₂	k	g	g 1	X	m ₁	n ₂	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
063	271	123	109	17	136	103	318	123	124	8			
071	297	139	118	24		130 103	338	139	133	13			
080	369	156	132	25	152	152		383	156	142	24		
090	418	178	137	29			121	436	176	147	28	194	125
100	463	196	147	36			132	121	479	194	158	35	
112	472	220	158	38			512	218	168	37			
132	599	261	187	51	194	125	621	258	187	51			

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112	20		74110		3.0	50	31.0	
132		38	M12	80		70	41.0	10.0

	b ₇	i ₄	b ₅	e ₅	h	c ₅	s ₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	100	40	80	120	63	10	7.0
071	112	45	90	134	71	11	7.0
080	125	50	100	154	80	13	10.0
090	140	56	125	174	90	15	10.0
100	160	63	140	194	100	15	
112	190	70	140	223	112	14	12.0
132	216	89	178	260	132	16	

Technische Daten

Abmessungen, eigenbelüftet (4-polig)

Bauform B5

Motortyp													
			MFE	MAXX					MFE/	MABR			
	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
063	215	123	109	17	136	103	271	123	109	17	136	103	
071	246	139	118	24	130	103	297	139	118	24	130	103	
080	272	156	132	25			345	154	132	25		121	
090	337	176	137	29	150	121	399	176	137	29	152		
100	382	194	147	36	152	121	458	194	147	36	132		
112	392	218	158	38			482	218	158	38			
132	497	258	187	51	194	125	576	258	187	51	194	125	

Technische Daten

Abmessungen, eigenbelüftet (4-polig)

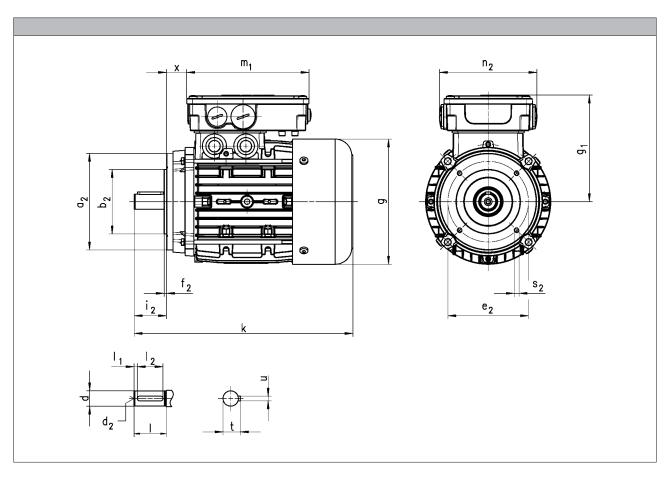
Bauform B5

Motortyp		
	MFEMARS	MFEMABS
	MFEMAIG	MFEMABI
	MFEMAAG	MFEMABA

	k	g	g ₁	X	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	271	123	109	17	136	103	318	123	124	8		
071	297	139	118	24	130	103	338	139	133	13		
080	369	156	132	25		121	383	156	142	24		
090	418	178	137	29	152		436	176	147	28	194	125
100	463	196	147	36	132		479	194	158	35		
112	472	220	158	38			512	218	168	37		
132	599	261	187	51	194	125	621	258	187	51		

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112	20		74110	00	3.0	30	31.0	
132		38	M12	80		70	41.0	10.0

	Flanschgröße							
		a ₂	b ₂	c ₂	e ₂	f ₂	s ₂	i ₂
			j6					-0.6 0.5
		[mm]						
063	FF115	140	95	10	115	3.0	10.0	23.0
071	FF130	160	110	10	130		10.0	30.0
080	FF165	200	130	11	165	3.5	12.0	40.0
090	LL102	200	150	11	103		12.0	50.0
100	FF215	250	180	15	215			60.0
112	FF215	230	190	13	213	4.0	14.5	00.0
132	FF265	300	230	20	265			80.0


Technische Daten

Abmessungen, eigenbelüftet (4-polig)

Bauform B14

Motortyp												
			MFE	MAXX					MFE	MABR		
	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	215	123	109	17	136	103	271	123	109	17	136	103
071	246	139	118	24	130	105	297	139	118	24	130	
080	272	156	132	25			345	154	132	25		
090	337	176	137	29	150	121	399	176	137	29	152	121
100	382	194	147	36	152	121	458	194	147	36	132	121
112	392	218	158	38			482	218	158	38		

Technische Daten

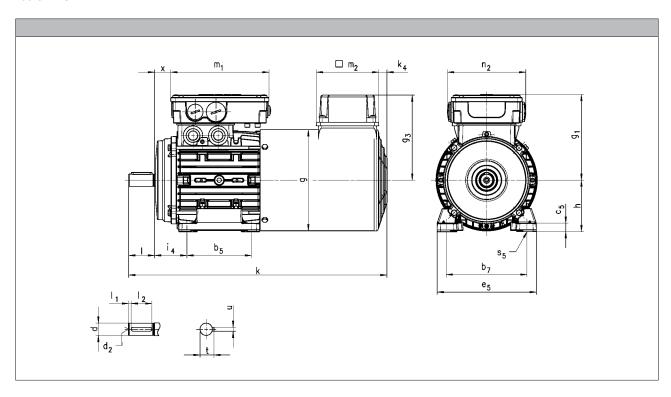
Abmessungen, eigenbelüftet (4-polig)

Bauform B14

Motortyp												
				MARS					MFE!	MABS		
				MAIG					MFE			
			WFEN	ΛAAG					MFE	NABA		
	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]

	K	g	81	Α	1111	112	K	g	81	Α	1111	112
	[mm]											
063	271	123	109	17	136	103	318	123	124	8		
071	297	139	118	24	130	103	338	139	133	13		
080	369	156	132	25		121	383	156	142	24	194	125
090	418	178	137	29	152		436	176	147	28	194	123
100	463	196	147	36	152		479	194	158	35		
112	472	220	158	38			512	218	168	37		

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112			MITO	60		30	31.0	


	Flanschgröße						
		a ₂	b ₂	e ₂	f ₂	s ₂	i ₂
			j6				-0.6 0.5
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	FT75	90	60	75	2.5	M5x10	23.0
071	FT85	105	70	85	2.3	M6x10	30.0
080	FT100	120	80	100	3.0	M6x12	40.0
080	FT130	160	110	130	3.5	M8x14	40.0
090	FT115	140	95	115	3.0	M8x16	50.0
090						MOXIO	30.0
100	FT130	160	110	130	3.5	M8x14	60.0
112						M8x16	55.0

Abmessungen, fremdbelüftet (4-polig)

Bauform B3

Motortyp																				
				М	FFMAX	X							M	FFMAB	R					
	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂		
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
063	345	123	109	17	136	102	115			385	123	109	17	136	103	115				
071	373	138	118	24	130	103	122			410	138	118	24	130	103	122				
080	400	156	132	25			133	0		455	156	132	25			133				
090	460	176	137	29	152	121	141		0	0	0	105	512	176	137	29	152	121	141	0
100	491	194	147	36	132	121	150			552	194	147	36	132	121	150	2			
112	495	218	158	38			162			575	218	158	38			162				
132	612	257	187	51	194		182	-		698	257	187	51	194	125	182				

--

Technische Daten

Abmessungen, fremdbelüftet (4-polig)

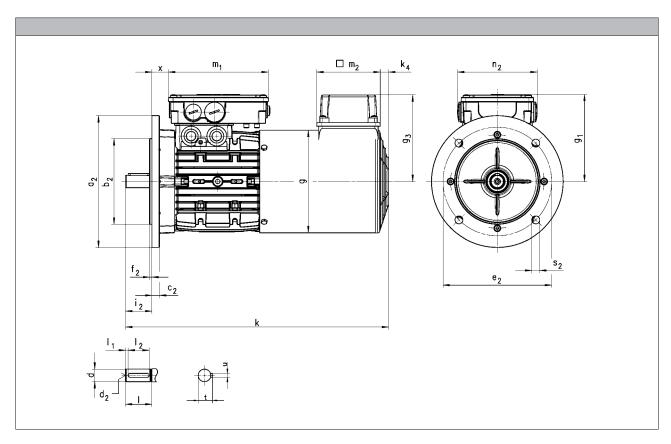
Bauform B3

Motortyp		
	MFFMARS	MFFMABS
	MFFMAIG	MFFMABI
	MFFMAAG	MFFMABA
	MITMAG	MITMADA

	k	g	g ₁	Х	m_1	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	х	m_1	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	103	115	0	105	385	123	124	8	194	125	115	0	105
071	373	138	118	24	130	103	122			410	138	133	13			122		
080	400	156	132	25	152 12	121	133			455	156	142	24			133		
090	460	176	137	29			141			512	176	147	28			141		
100	491	194	147	36			150			552	194	158	35			150		
112	575	218	158	38			162			575	218	168	37			162		
132	698	257	187	51	194	125	182			698	257	187	51			182		

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112	20		MITO	00	J.U	50	31.0	
132		38	M12	80		70	41.0	10.0

	b ₇	i ₄	b ₅	e ₅	h	c ₅	s ₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	100	40	80	120	63	10	7.0
071	112	45	90	134	71	11	7.0
080	125	50	100	154	80	13	10.0
090	140	56	125	174	90	13	10.0
100	160	63	140	194	100	15	
112	190	70	140	223	112	14	12.0
132	216	89	178	260	132	16	


Technische Daten

Abmessungen, fremdbelüftet (4-polig)

Bauform B5

Motorty	р																	
				М	FFMAX	X			MFFMABR									
	k [mm]	g [mm]	g ₁ [mm]	x [mm]	m ₁	n ₂ [mm]	g ₃ [mm]	k ₄	m ₂	k [mm]	g [mm]	g ₁ [mm]	x [mm]	m ₁	n ₂ [mm]	g ₃ [mm]	k ₄ [mm]	m ₂
063	345	123	109	17	126	100	115		105	385	123	109	17	126	103	115	0	
071	373	138	118	24	136	103	122			410	138	118	24	136		122		
080	400	156	132	25			133	0		455	156	132	25	152	121	133		105
090	460	176	137	29	152	121	141			512	176	137	29			141		
100	491	194	147	36	132		150			552	194	147	36			150		
112	495	218	158	38			162			575	218	158	38			162		
132	612	257	187	51	194	125	182			698	257	187	51	194	125	182		

Technische Daten

Abmessungen, fremdbelüftet (4-polig)

Bauform B5

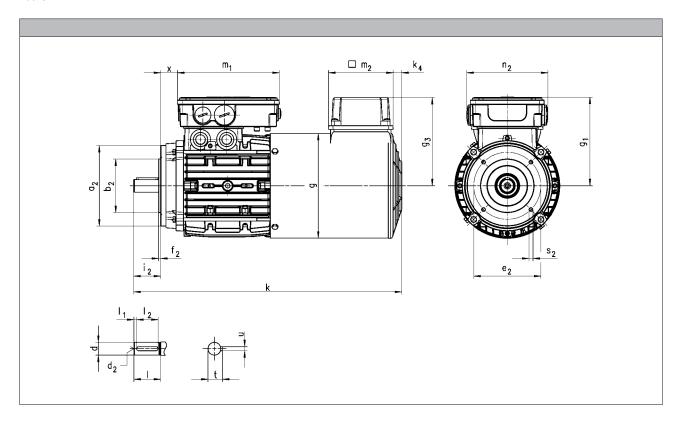
Motortyp																		
				Μ	FFMAR	S							M	FFMAB	S			
					FFMAI									FFMAB				
				MI	FFMAA	G							M	FFMAB	4			
	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	103	115			385	123	124	8			115		
071	373	138	118	24	130	103	122		105	410	138	133	13			122		
080	400	156	132	25			133			455	156	142	24			133		
090	460	176	137	29	152	101	141	0		512	176	147	28	194	125	141	0	105
100	491	194	147	36	132	121	150			552	194	158	35			150		
112	575	218	158	38			162			575	218	168	37			162		

51 194 125

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112			MITO	00	J.U	50	31.0	
132		38	M12	80		70	41.0	10.0

	Flanschgröße							
		a ₂	b ₂	c ₂	e ₂	f ₂	s ₂	i ₂
			j6					-0.6 0.5
		[mm]						
063	FF115	140	95	10	115	3.0	10.0	23.0
071	FF130	160	110	10	130		10.0	30.0
080	FF165	200	130	11	165	3.5	12.0	40.0
090	LLIO	200	150	11	103		12.0	50.0
100	FF215	250	180	15	215			60.0
112	FF215	230	190	13	213	4.0	14.5	00.0
132	FF265	300	230	20	265			80.0

5.7 - 27 Lenze | V05-de_DE-08/2018


Technische Daten

Abmessungen, fremdbelüftet (4-polig)

Bauform B14

Motortyp																		
				М	FFMAX	X							Μ	FFMAB	R			
	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	103	115			385	123	109	17	136	103	115		
071	373	138	118	24	130	103	122			410	138	118	24	130	103	122		
080	400	156	132	25			133	0	105	455	156	132	25			133	0	105
090	460	176	137	29	152	121	141		103	512	176	137	29	152	121	141		103
100	491	194	147	36	132	121	150		552	194	147	36	132	121	150			
112	495	218	158	38			162			575	218	158	38			162		

Technische Daten

162

Abmessungen, fremdbelüftet (4-polig)

Bauform B14

112

575

218 158

Motortyp																		
				М	FFMAR FFMAI(FFMAA	Ĵ							Μ	FFMAB FFMAB FFMAB	1			
	k	g	g 1	Х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	103	115			385	123	124	8			115		
071	373	138	118	24	130	103	122			410	138	133	13			122		
080	400	156	132	25			133	0	105	455	156	142	24	194	125	133	0	105
090	460	176	137	29	152	121	141		103	512	176	147	28	194	123	141		103
100	491	194	147	36	132	121	150			552	194	158	35			150		

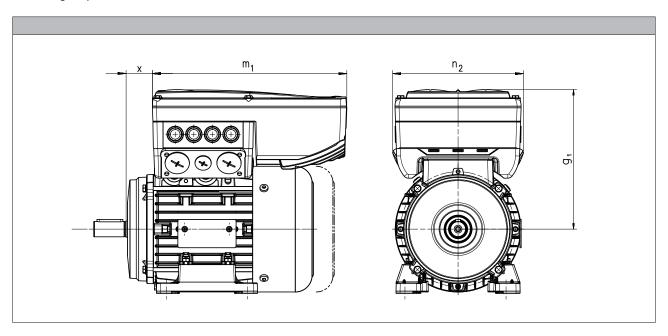
162

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112			MITO	60		30	31.0	

218 168

	Flanschgröße						
		a ₂	b ₂	e ₂	f ₂	s ₂	i ₂
			j6				-0.6 0.5
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	FT75	90	60	75	2.5	M5x10	23.0
071	FT85	105	70	85	2.3	M6x10	30.0
080	FT100	120	80	100	3.0	M6x12	40.0
080	FT130	160	110	130	3.5	M8x14	40.0
090	FT115	140	95	115	3.0	M8x16	50.0
090						MOXIO	30.0
100	FT130	160	110	130	3.5	M8x14	60.0
112						M8x16	00.0

Lenze | V05-de_DE-08/2018 5.7 - 29


Technische Daten

Abmessungen, Inverter 8400 motec

Bemessungsfrequenz 120 Hz

Produk	tschlüssel				
Motor	Umrichter				
		g _{1, 120Hz}	m _{1, 120Hz}	n _{2, 120Hz}	X _{120Hz}
		[mm]	[mm]	[mm]	[mm]
MF□□□□□063-32	E84DVB□5514S□□□2□	154			23.5
MF□□□□□063-42	E84DVB□7514S□□□2□	134	241	161	23.3
MF□□□□□071-32	E84DVB□1124S□□□2□	163	241	101	29.5
MF□□□□□071-42	E84DVB□1524S□□□2□	103			29.3
MF□□□□□080-32	E84DVB□2224S□□□2□	201	260	176	31.5
MF□□□□□080-42	E84DVB□3024S□□□2□	201	200	170	31.3
MF□□□□□090-32	E84DVB□4024S□□□2□	261			23.3
MF□□□□□100-12	E84DVB□5524S□□□2□	272	325	195	29.9
MF□□□□□100-32	E84DVB□7524S□□□2□	212			29.9

Federkraftbremse

Die Drehstrommotoren können mit einer Federkraftbremse ausgestattet werden. Diese wird nach dem Abschalten der Versorgungsspannung aktiv (Ruhestromprinzip). Zur optimalen Anpassung des Bremsmomtors an die Applikation stehen in jeder Motorbaugröße mehrere Bremsmomente und Ansteuervarianten zur Verfügung. Für Anwendungen mit sehr hohen Schalthäufigkeiten ist zudem eine LongLife-Ausführung der Bremse erhältlich, die eine verstärkte Bremsenmechanik aufweist.

Eigenschaften

Ausführungen

- Standard
 - 1 x 10⁶ Schaltzyklen repetierend
 - 1 x 106 Schaltzyklen reversierend
- LongLife
 - 10 x 10⁶ Schaltzyklen repetierend
 - 15 x 106 Schaltzyklen reversierend

Ansteuerung

- DC-Versorgung
- AC-Versorgung über Gleichrichter im Klemmenkasten

Schutzart

- ohne Handlüftung IP55
- mit Handlüftung IP54

Reibbelag

Asbestfrei, verschleißarm

Optionen

- Handlüftung
- Approbation UL/CSA
- geräuscharm

Zuordnung Motor – Bremse

orm				
		Standard		LongLife
Motorgröße	Baugröße	Kennmoment	Baugröße	Kennmoment
	Bremse		Bremse	
		M _k		M_k
		[Nm]		[Nm]
063-32	06	2.50	06	4.00
063-42	06	4.00	00	4.00
	06	2.50	06	4.00
071-32	06	4.00	08	3.50
	08	3.50	00	5.30
	06	2.50	06	4.00
071-42	06	4.00	08	3.50
0/1-42	08	3.50		
	08	8.00	08	8.00
	08	3.50	00	8.00
080-32	08	8.00	08	
	10	7.00	10	7.00
	08	3.50	08	8.00
000.43	08	8.00		
080-42	10	7.00	10	7.00
	10	16.0	10	16.0

Lenze | V05-de_DE-08/2018 5.7 - 31

Zubehör

Federkraftbremse

Zuordnung Motor – Bremse

Bauform Standard LongLife

Motorgröße	Baugröße	Kennmoment	Baugröße	Kennmoment
Motorgroise		Kemmoment		Kemmoniene
	Bremse		Bremse	
		M_k		M_k
		[Nm]		[Nm]
	08	3.50		
	08	8.00	08	8.00
090-32	10	7.00	10	7.00
	10	16.0	10	16.0
	10	23.0		
	10	7.00		
100-12	10	16.0		
100-12	12	14.0		
	12	32.0	10	16.0
	10	7.00	12	14.0
	10	16.0	12	32.0
100-32	12	14.0		
	12	32.0		
	12	46.0		
	12	14.0		
112-22	12	32.0		
112-22	14	35.0		
	14	60.0		
	14	35.0		
132-12	14	60.0		
132-12	16	60.0		
	16	80.0		
	14	35.0		
132-22	14	60.0		
132-32	16	60.0		
132-32	16	80.0		
	16	100		

- -

Zubehör

Federkraftbremse

Direkter Anschluss ohne Gleichrichter

Wird die Bremse direkt ohne Gleichrichter angesteuert, ist zum Schutz vor Induktionsspitzen eine Freilaufdiode oder ein Funkenlöschglied erforderlich.

Anschlussspannungen

DC 24 V

DC 180 V

DC 205 V

Anschluss über Netzspannung mit Bremsengleichrichter

Wird die Bremse nicht direkt mit einer Gleichspannung versorgt, ist ein Gleichrichter erforderlich. Dieser ist im Lieferumfang enthalten und befindet sich im Klemmenkasten des Motors. Der Gleichrichter wandelt die Wechselspannung des Anschlusses in eine Gleichspannung um. Folgende Gleichrichter sind verfügbar:

Einweggleichrichter, 6-polig

- Verhältnis Anschlussspannung / Bremsspulenspannung = 2.22
- Approbation UL / CSA
- Anschlussspannungen

AC 230 V

AC 400 V

AC 460 V

Brückengleichrichter, 6-polig

- Verhältnis Anschlussspannung / Bremsspulenspannung = 1.11
- Anschlussspannung AC 230 V

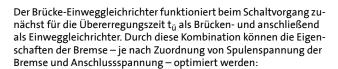
Brücke-Einweggleichrichter, 6-polig

- Verhältnis Anschlussspannung / Bremsspulenspannung bis zur Übererregungszeit = 1.11 ab der Übererregungszeit = 2.22
- Anschlussspannungen

AC 230 V

AC 400 V

Zubehör



Federkraftbremse

Anschluss über Netzspannung mit Bremsengleichrichter

Brücke-Einweggleichrichter, 6-polig

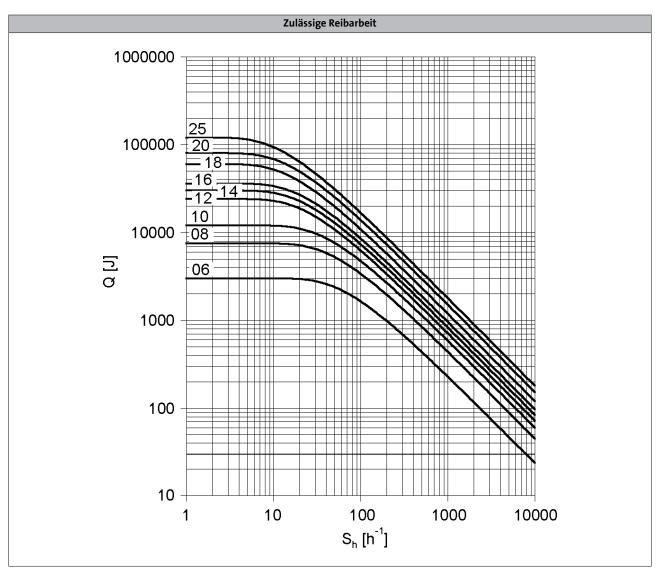
- Verhältnis Anschlussspannung / Bremsspulenspannung bis zur Übererregungszeit = 1.11 ab der Übererregungszeit = 2.22
- Anschlussspannungen AC 230 V AC 400 V

• Kurzzeitige Übererregung der Bremsenspule

Indem die Bremsspule für die Übererregungszeit $t_{\ddot{u}}$ mit der doppelten Nennspannung angesteuert wird, lässt sich die Trennzeit reduzieren. Die Bremse öffnet schneller und der Verschleiß des Reibbelages sinkt.

Aufgrund dieser Eigenschaften eignet sich diese Ansteuerungsvariante besonders für Hebeanwendungen. Sie ist daher nur in Kombination mit einer Bremse mit erhöhtem Bremsmoment erhältlich.

• Haltestromabsenkung (Cold Brake)


Durch eine Haltestromabsenkung reduziert der Brücke-Einweggleichrichter die Leistungsaufnahme der geöffneten Bremse. Da sich die Bremse weniger erwärmt, wird diese Ansteuerung als "Cold Brake" bezeichnet.

5./

Zubehör

Federkraftbremse

Q =Schaltarbeit pro Schaltspiel S_h =Schalthäufigkeit Bremsengröße = 06 ... 25

Lenze | V05-de_DE-08/2018 5.7 - 35

Zubehör

Federkraftbremse

Bemessungsdaten mit reduziertem Bremsmoment

- ► Beim Bremsmoment und der Höchstschaltarbeit ist die Einheit für die Werte (100 ... 3600) r/min.
- Nicht aufgeführte Bremsmomente und Höchstschaltarbeiten bitte anfragen.

Baugröße											
			06	08	10	12	14	16	18	20	25
Leistungsaufnahme											ı
	P _{in}	[kW]	0.020	0.025	0.030	0.040	0.050	0.055	0.085	0.10	0.11
Bremsmoment											
100	M _B	[Nm]	2.50	3.50	7.00	14.0	35.0	60.0	80.0	145	265
1000	M _B	[Nm]	2.30	3.10	6.10	12.0	30.0	50.0	65.0	115	203
1200	M _B	[Nm]	2.30	3.10	6.00	12.0	29.0	48.0	63.0	112	199
1500	M _B	[Nm]	2.20	3.00	5.80	11.0	28.0	47.0	61.0	1091)	1931)
1800	M _B	[Nm]	2.10	2.90	5.70	11.0	28.0	46.0	60.01)		
3000	M _B	[Nm]	2.00	2.80	5.30	10.0	26.01)	43.0 1)			
3600	M _B	[Nm]	2.00	2.70	5.20	10.01)					
Höchstschaltarbeit											
100	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1000	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1200	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1500	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	24.0 1)	36.0 ¹⁾
1800	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	36.01)		
3000	Q _E	[KJ]	3.00	7.50	12.0	24.0	18.0 1)	11.0 1)			
3600	Q _E	[KJ]	3.00	7.50	12.0	7.00 1)					
Übergangsschalthäufigkeit											
	S _{hü}	[1/h]	79.0	50.0	40.0	30.0	28.0	27.0	20.0	19.0	15.0
Massenträgheitsmoment						1	1			1	1
	J	[kgcm²]	0.15	0.61	2.00	4.50	6.30	15.0	29.0	73.0	200
Masse				ı	ı		I	ı		ı	ı
	m	[kg]	0.90	1.50	2.60	4.20	5.80	8.70	12.6	19.5	31.0

 $^{^{1)}\,\}text{Im}$ Bereich der Belastungsgrenze kann sich der Wert für die Reibarbeit Q_{BW} bis auf 40 % reduzieren.

- -

5.7 - 37

inverteropt. Drehstrommotoren MF

Zubehör

Federkraftbremse

Bemessungsdaten mit reduziertem Bremsmoment

► Ansteuerung über Einweg- oder Brückengleichrichter

Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[MJ]	113	210	264	706	761	966	1542	2322	3522
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	11.0	14.0	20.0	21.0	37.0	53.0	32.0	47.0	264
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	13.0	10.0	17.0	19.0	22.0	30.0	20.0	100	120
Verknüpfzeit											
	t ₁	[ms]	24	1.0	37.0	40.0	59.0	83.0	52.0	147	384
Trennzeit											
	t ₂	[ms]	35.0	37.0	57.0	65.0	148	169	230	207	269

► Ansteuerung über Brücke-Einweggleichrichter

Ausführung											
					Ha	ltestroma	bsenkung	(Cold Bra	ıke)		
Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[WJ]	113	210	264	706	761	966	1542	2322	3522
Übererregungszeit											
	tü	[ms]		30	00				1300		
Min. Ausschaltzeit											
	t	[ms]		9	00				3900		
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	12.0	22.0	35.0	49.0	61.0	114	83.0	126	304
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	14.0	16.0	30.0	45.0	37.0	65.0	52.0	269	138
Verknüpfzeit											
	t ₁	[ms]	26.0	38.0	66.0	93.0	97.0	180	134	395	443
Trennzeit											
	t ₂	[ms]	35.0	37.0	57.0	65.0	148	169	230	207	269

 Die Ansprech- und Einfallzeiten der Bremse sind Richtwerte. Die Verknüpfzeit ist bei wechselstromseitigem Schalten um den Faktor 10 größer.
 Bei maximalem Luftspalt erhöht sich die Trennzeit t₂ – je nach Bremse und Ansteuerung – bis auf das 4-fache der Trennzeit bei

Nennluftspalt.

Lenze | V05-de_DE-08/2018

Zubehör

Federkraftbremse

Bemessungsdaten mit Standard-Bremsmoment

- ► Beim Bremsmoment und der Höchstschaltarbeit ist die Einheit für die Werte (100 ... 3600) r/min.
- Nicht aufgeführte Bremsmomente und Höchstschaltarbeiten bitte anfragen.

Baugröße											
			06	08	10	12	14	16	18	20	25
Leistungsaufnahme											
	P _{in}	[kW]	0.020	0.025	0.030	0.040	0.050	0.055	0.085	0.10	0.11
Bremsmoment											
100	M _B	[Nm]	4.00	8.00	16.0	32.0	60.0	80.0	150	260	400
1000	M _B	[Nm]	3.70	7.20	14.0	27.0	51.0	66.0	121	206	307
1200	M _B	[Nm]	3.60	7.00	14.0	27.0	50.0	65.0	118	201	300
1500	M _B	[Nm]	3.50	6.80	13.0	26.0	48.0	63.0	115	195 ¹⁾	2911)
1800	M _B	[Nm]	3.40	6.70	13.0	26.0	47.0	61.0	112 1)		
3000	M _B	[Nm]	3.20	6.30	12.0	24.0	44.0 1)	57.0 ¹⁾			
3600	M _B	[Nm]	3.20	6.10	12.0	23.0 1)					
Höchstschaltarbeit											
100	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1000	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1200	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1500	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	24.0 1)	36.0 1)
1800	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	36.0 1)		
3000	Q _E	[KJ]	3.00	7.50	12.0	24.0	18.0 1)	11.0 1)			
3600	Q _E	[KJ]	3.00	7.50	12.0	7.00 1)					
Übergangsschalthäufigkeit											
	S _{hü}	[1/h]	79.0	50.0	40.0	30.0	28.0	27.0	20.0	19.0	15.0
Massenträgheitsmoment						1	1			1	1
	J	[kgcm²]	0.15	0.61	2.00	4.50	6.30	15.0	29.0	73.0	200
Masse				I	I	I	I	I	I	I	I
	m	[kg]	0.90	1.50	2.60	4.20	5.80	8.70	12.6	19.5	31.0

 $^{^{1)}\,\}text{Im}$ Bereich der Belastungsgrenze kann sich der Wert für die Reibarbeit Q_{BW} bis auf 40 % reduzieren.

- -

Zubehör

Federkraftbremse

Bemessungsdaten mit Standard-Bremsmoment

► Ansteuerung über Einweg- oder Brückengleichrichter

Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[MJ]	85.0	158	264	530	571	966	1542	2322	3522
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	15	5.0	28	3.0	17.0	27.0	33.0	65.0	110
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	13.0	16.0	19.0	25	5.0	30.0	45.0	100	120
Verknüpfzeit											
	t ₁	[ms]	28.0	31.0	47.0	53.0	42.0	57.0	78.0	165	230
Trennzeit											
	t ₂	[ms]	45.0	57.0	76.0	115	210	220	270	340	390

► Ansteuerung über Brücke-Einweggleichrichter

Ausführung											
					Ha	ltestroma	bsenkung	(Cold Bra	ıke)		
Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q_{BW}	[MJ]	85.0	158	264	530	571	966	1542	2322	3522
Übererregungszeit											
	tü	[ms]		30	00				1300		
Min. Ausschaltzeit											
	t	[ms]		9	00				3900		
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	16.0	25.0	31.0	48.0	33.0	58.0	80.0	102	154
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	14.0	27.0	21.0	43.0	49.0	64.0	109	157	168
Verknüpfzeit											
	t ₁	[ms]	30.0	52	2.0	90.0	82.0	122	189	259	322
Trennzeit											
	t ₂	[ms]	45.0	57.0	76.0	115	210	220	270	340	390

 Die Ansprech- und Einfallzeiten der Bremse sind Richtwerte. Die Verknüpfzeit ist bei wechselstromseitigem Schalten um den Faktor 10 größer.
 Bei maximalem Luftspalt erhöht sich die Trennzeit t₂ – je nach Bremse und Ansteuerung – bis auf das 4-fache der Trennzeit bei Nennluftspalt.

Lenze | V05-de_DE-08/2018 5.7 - 39

Zubehör

Federkraftbremse

Bemessungsdaten mit erhöhtem Bremsmoment

- ► Beim Bremsmoment und der Höchstschaltarbeit ist die Einheit für die Werte (100 ... 3600) r/min.
- Nicht aufgeführte Bremsmomente und Höchstschaltarbeiten bitte anfragen.

Baugröße												
Buugioise			10	12	14	16	16	18	20	20	25	25
Leistungsaufnahme												
	P _{in}	[kW]	0.030	0.040	0.050	0.055	0.055	0.085	0.10	0.10	0.11	0.11
Bremsmoment											1	
100	M _B	[Nm]	23.0	46.0	75.0	100	125	200	315	400	490	600
1000	M _B	[Nm]	20.0	39.0	64.0	83.0	103	162	249	317	376	461
1200	M _B	[Nm]	20.0	39.0	62.0	81.0	101	158	244	309	367	449
1500	M _B	[Nm]	19.0	38.0	60.0	78.0	98.0	153	2371)	300 1)	356 1)	436 1)
1800	M _B	[Nm]	19.0	37.0	59.0	77.0	96.0	150 ¹⁾				
3000	M _B	[Nm]	17.0	34.0	55.0 1)	71.0 1)	89.01)					
3600	M _B	[Nm]	17.0	33.01)								
Höchstschaltarbeit												
100	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	80.0	80.0	120	120
1000	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	80.0	80.0	120	120
1200	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	80.0	80.0	120	120
1500	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	24.0 1)	24.0 1)	36.0 ¹⁾	36.0 1)
1800	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	36.0 1)				
3000	Q _E	[KJ]	12.0	24.0	18.0 1)	11.0 1)	11.0 1)					
3600	Q _E	[KJ]	12.0	7.001)								
Übergangsschalthäufigkeit												
	S _{hü}	[1/h]	40.0	30.0	28.0	27.0	27.0	20.0	19.0	19.0	15.0	15.0
Massenträgheitsmoment					1		1			1		
	J	[kgcm²]	2.00	4.50	6.30	15.0	15.0	29.0	73.0	73.0	200	200
Masse					I.	ı		ı	ı	I.	ı	ı
	m	[kg]	2.60	4.20	5.80	8.70	8.70	12.6	19.5	19.5	31.0	31.0

 $^{^{1)}\, \}text{Im}$ Bereich der Belastungsgrenze kann sich der Wert für die Reibarbeit Q_{BW} bis auf 40 % reduzieren.

► Ansteuerung über Einweg- oder Brückengleichrichter

Baugröße												
			10	12	14	1	.6	18	2	.0	2	5
Reibarbeit												
	Q_{BW}	[MJ]	198	353	253	563	241	578	1596	580	2465	1409
Ansprechverzug												
Verknüpfen	t ₁₁	[ms]	10.0	16.0	11.0	22.0	17.0	24.0	46.0	17.0	77.0	38.0
Anstiegszeit												
Bremsmoment	t ₁₂	[ms]	19.0	25	5.0	30	0.0	45.0	10	00	12	20
Verknüpfzeit												
	t ₁	[ms]	29.0	41.0	36.0	52.0	47.0	69.0	146	117	197	158
Trennzeit												
	t ₂	[ms]	109	193	308	297	435	356	378	470	451	532

5.7 - 40

Zubehör

Federkraftbremse

Verknüpfen

Anstiegszeit
Bremsmoment

Verknüpfzeit

Trennzeit

Bemessungsdaten mit erhöhtem Bremsmoment

► Ansteuerung über Brücke-Einweggleichrichter

Ausführung												
						Haltestro	omabser	kung (Co	ld Brake)		
Baugröße												
			10	12	14	1	.6	18	2	.0	25	
Reibarbeit												
	Q _{BW}	[MJ]	198	353	253	563	241	578	1596	580	2465	1409
Übererregungszeit												1
	tü	[ms]	30	00				13	800			
Min. Ausschaltzeit					'							
	t	[ms]	90	00				39	000			
Ansprechverzug					'							
Verknüpfen	t ₁₁	[ms]	24.0 27.0 17.0 41.0 21.0 60.0 69.0 17.0 123 85.0							85.0		
Anstiegszeit												
Bremsmoment	t ₁₂	[ms]	44.0	43.0	37.0	55.0	37.0	113	148	100	190	270
Verknüpfzeit												
	t ₁	[ms]	68.0	70.0	54.0	97.0	57.0	173	217	334	313	355
Trennzeit												
	t ₂	[ms]	109	193	308	297	435	356	378	470	451	532
Ausführung												
							Überei	rregung				
Baugröße												
			10	12	14	1	.6	18	2	.0	2	25
Reibarbeit						1		1				
	Q _{BW}	[MJ]	264	706	761	96	66	1542	23	322	35	522
Übererregungszeit												
	t _ü	[ms]	30	00				13	800			
Min. Ausschaltzeit												
	t	[ms]	90	00				39	000			
Ansprechverzug												

54.0

87.0

141

29.0

53.0

82.0

53.0

31.0

68.0

99.0

117

70.0

93.0

163

141

46.0

83.0

129

168

86.0

160

246

151

103

222

325

160

 Die Ansprech- und Einfallzeiten der Bremse sind Richtwerte. Die Verknüpfzeit ist bei wechselstromseitigem Schalten um den Faktor 10 größer.

t₁₁

t₁₂

 t_1

 t_2

[ms]

[ms]

[ms]

[ms]

Bei maximalem Luftspalt erhöht sich die Trennzeit t_2 – je nach Bremse und Ansteuerung – bis auf das 4-fache der Trennzeit bei Nennluftspalt.

Lenze | V05-de_DE-08/2018 5.7 - 41

5.7

55.0

319

374

167

171

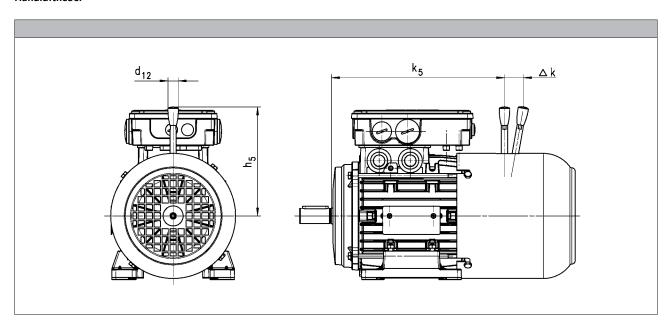
266

437

184

135

430


565

Federkraftbremse

Handlüfthebel

	Bremse				
		k ₅	Δk	h ₅	d ₁₂
		[mm]	[mm]	[mm]	[mm]
063	06	178	29	107	13.0
071	06	199	29	107	13.0
071	08	197	27	136	13.0
080	08	221	27	136	13.0
080	10	232	28	132	13.0
090	08	254	27	136	13.0
090	10	265	28	132	13.0
100	10	293	28	132	13.0
100	12	307	37	161	13.0
112	12	306	37	161	13.0
112	14	323	41	195	24.0
132	14	386	41	195	24.0
132	16	389	55	240	24.0

Folgende Kombinationen mit Handlüfthebel und Motoranschluss in gleicher Lage sind nicht möglich:

- Steckverbinder HAN mit Anschluss in Lage 1
- Inverter motec
- Klemmenkasten der Motorengrößen 071, 080, 090 für Bremse und Rückführung (M□□MA BR/BS/BA/BI)

Zubehör

Rückführungen

Für die Drehzahl- und Positionserfassung stehen je nach Applikation die nachfolgenden Resolver, Inkremental- oder Absolutwertgeber zur Verfügung.

Resolver

Der ständergespeiste Resolver mit zwei um 90° versetzten Ständerwicklungen und einer Läuferwicklung mit Transformatorwicklung kann sowohl die Drehzahl als auch die Rotorlage erfassen. Die Rotorlage bleibt bei einem Spannungsausfall erhalten.

Die Drehstrommotoren mit Resolver k\u00f6nnen nicht f\u00fcr drehzahlabh\u00e4ngige Sicherheitsfunktionen in Verbindung mit dem Sicherheitsmodul SM 301 eingesetzt werden.

Produktschlüssel				
				RS1
Genauigkeit				
			[']	-10 10
Absolute Positionierung				
				1 Umdrehung
Max. Eingangsspannung				
DC	U _{in,max}		[V]	10.0
Max. Eingangsfrequenz				
	f _{in,max}		[kHz]	4.00
Übersetzungsverhältnis				
Ständer / Läufer		± 5 %		0.30
Läuferimpedanz				
	Z _{ro}		[Ω]	51 + j90
Ständerimpedanz				
	Z _{so}		[Ω]	102 + j150
Impedanz				
	Z _{rs}		[Ω]	44 + j76
Min. Isolationswiderstand				
bei DC 500 V	R		[MΩ]	10.0
Polpaarzahl				
				1

Lenze | V05-de_DE-08/2018 5.7 - 43

Rückführungen

Inkremental- und SinCos-Absolutwertgeber

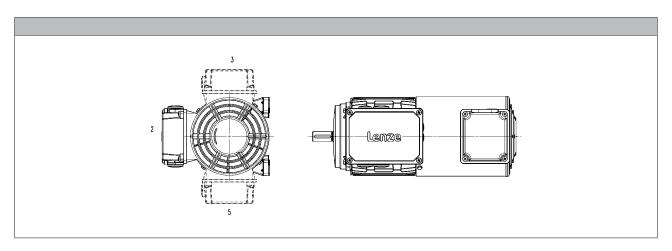
Inkrementalgeber können nur zur Drehzahlerfassung, nicht aber zur Drehzahlregelung eingesetzt werden. Es ist eine Referenzfahrt nötig, um später eine Positionierung zu ermöglichen.

Absolutwertgeber können die Drehzahl, die Rotorlage und die Maschinenposition mit einer sehr hohen Auflösung erfassen. Sie werden zur Positionierung von dynamischen Applikationen verwendet, eine Referenzfahrt ist nicht nötig.

▶ Die Drehstrommotoren mit Inkrementalgebern oder SinCos-Absolutwertgebern können nicht für drehzahlabhängige Sicherheitsfunktionen in Verbindung mit dem Sicherheitsmodul SM 301 eingesetzt werden.

Geberart				HTL-Inkre	emental		тт	L-Inkremen	tal	SinCos- Absolut- wert		
Produktschlüssel												
			IG128-24V- H	IG512- 24V-H	IG1024- 24V-H	IG2048- 24V-H	IG512- 5V-T	IG1024- 5V-T	IG2048- 5V-T	AM1024- 8V-H		
Gebertyp									l			
										Multi- turn		
Impulse												
			128	128 512 1024 2048 512 1024 2048								
Ausgangssignale				128 312 1024 2048 312 1024 2048								
				НТ	L			TTL		1 Vss		
Schnittstellen												
			A, B-Spur		Д	, B-, N-Spu	r & invertie	rt		Hiperface		
Absolute Umdrehung												
						0				4096		
Genauigkeit												
		[']	-22.5 22.5			-2 .	2			-0.8 0.8		
Min. Eingangsspannung												
DC	U _{in,min}	[V]		8.0	0			4.75		7.00		
Max. Eingangsspannung												
DC	U _{in,max}	[V]	26.0 30.0 5.25									
Max. Stromaufnahme												
	I _{max}	[A]	0.040			0.:	15			0.080		
Grenzfrequenz												
	f _{max}	[kHz]	30.0		160			300		200		

5.7 - 44 Lenze | V05-de_DE-08/2018



Fremdlüfter

Im Betrieb mit Bemessungsdrehmoment bei niedrigen Drehzahlen (< 20 Hz) rotiert der Eigenlüfter nicht mehr schnell genug um eine ausreichende Kühlung des Motors zu gewährleisten. Um ein Überhitzen zu verhindern, ist ohne Fremdlüfter eine Drehmomentreduzierung des Motors notwendig.

Der Fremdlüfter kühlt den Motor gleichmäßig und unabhängig von der Motordrehzahl. Eine Drehmomentreduzierung ist nicht erforderlich und der Motor kann von 5 Hz bis zur Bemessungsfrequenz mit seinem Bemessungsdrehmoment betrieben werden.

Der Fremdlüfterklemmenkasten ist in den Lagen 2, 3 oder 5 erhältlich.

Bemessungsdaten 50 Hz

Baugröße	Phasenzahl	Schaltungsart				
Motor						
			U _{N, AC}	P _N	I _N	m
			[V]	[kW]	[A]	[kg]
	1		230	0.034	0.15	
063	3	Δ	250	0.015	0.083	2.00
	5	Υ	400	0.015	0.040	
	1		230	0.041	0.18	
071	3	Δ	250	0.016	0.083	2.10
	5	Υ	400	0.016	0.048	
	1		220	0.036	0.16	
080	3	Δ	230	0.020	0.088	2.30
	5	Υ	400	0.020	0.051	
	1		230	0.038	0.10	
090	2	Δ	250	0.036	0.19	2.70
	3	Υ	400	0.036	0.11	
	1		220	0.044	0.20	
100	3	Δ	230	0.043	0.19	3.00
	3	Υ	400	0.043	0.11	

Lenze | V05-de_DE-08/2018 5.7 - 45

J./

Zubehör

Fremdlüfter

Bemessungsdaten 50 Hz

Baugröße	Phasenzahl	Schaltungsart				
Motor						
			U _{N, AC}	P _N	I _N	m
			[V]	[kW]	[A]	[kg]
	1		230	0.050	0.23	
112	3	Δ	230	0.054	0.20	3.10
	5	Υ	400	0.054	0.11	
	1		230	0.095	0.42	
132	3	Δ	230	0.091	0.33	4.20
		Y	400	0.091	0.19	

Bemessungsdaten 60 Hz

Baugröße	Phasenzahl	Schaltungsart				
Motor						
			U _{N, AC}	P _N	I _N	m
			[V]	[kW]	[A]	[kg]
063				0.018	0.047	2.00
071		Y	460	0.020		2.10
080				0.028	0.053	2.30
090	3			0.047	0.11	2.70
100				0.059	0.11	3.00
112				0.074	0.12	3.10
132				0.13	0.21	4.20

Zubehör

Temperaturüberwachung

Zum Schutz des Motors gegen Überhitzung stehen die nachfolgenden Temperatursensoren zur Verfügung. Die Temperatursensoren sind in den Wicklungen integriert. Der Einsatz

Die Temperatursensoren sind in den Wicklungen integriert. Der Einsatzeines zusätzlichen Motorschutzschalters wird empfohlen.

Thermokontakte TKO

Der Thermokontakt TKO (Thermokontaktöffner) ist ein Bimetallschalter. Der TKO überwacht die Motorwicklungstemperatur, bei zu hohen Temperaturen schaltet das Motorrelais. Der Motor ist vom Netz getrennt

Funktion	Auslösetemperatur	Min. Rückschalttempe- ratur	Max. Rückschalttem- peratur	Max. Eingangsstrom	Max. Eingangsspan- nung
					AC
	Т	T _{min}	T _{max}	I _{in,max}	U _{in,max}
	-5 5				
	[°C]	[°C]	[°C]	[A]	[V]
Öffner	150	90.0	135	2.50	250

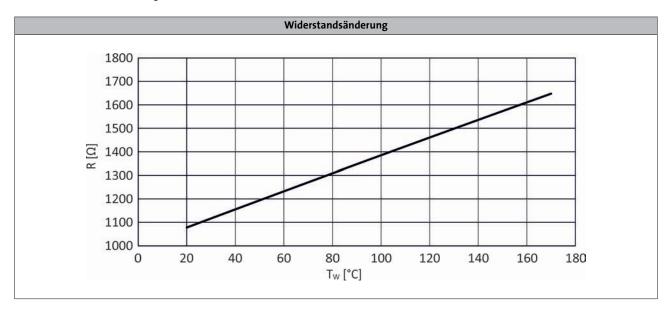
Kaltleiter PTC

Der PTC-Widerstand wird in Verbindung mit einem Auslösegerät betrieben. Wird der Motor zu heiß, kann der Motor mithilfe eines Schützes ausgeschaltet werden. Im Gegensatz zum Thermokontakt ist ein schnelles Wiedereinschalten möglich.

Funktion	Auslösetemperatur		Norm		
		155 °C	-20 °C	140 °C	
	Т	R _N	R _N	R _N	
	-5 5				
	[°C]	[Ω]	[Ω]	[Ω]	
Sprunghafte Wider- standsänderung	150	550	30.0	250	DIN 44080 VDE 0660 Teil 303

Lenze | V05-de_DE-08/2018 5.7 - 47

Zubehör


Lenze | V05-de_DE-08/2018

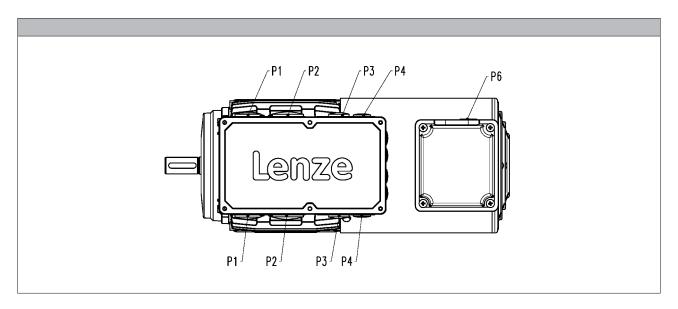
Temperaturüberwachung

Temperaturfühler PT1000

Die Temperaturfühler funktionieren als kontinuierlich veränderlicher Widerstand tendenziell ähnlich wie Kaltleiter. Der Widerstand steigt bei zunehmender Temperatur jedoch nur vergleichsweise langsam an. Dadurch kann ein Regler regelmäßig die Temperatur ermitteln und bereits frühzeitig eine Prozessbewertung vornehmen. So kann der Motor bereits vor dem Überhitzen abgeschaltet werden.

 Bei Speisung der Temperatursensoren mit einem Messstrom von 1 mA gilt der Zusammenhang zwischen Temperatur und gemessenem Widerstand im Diagramm.

5.7


5.7 - 48

Klemmenkasten

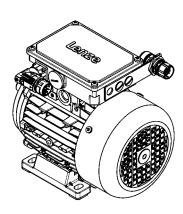
Der Standard-Anschluss findet über einen Klemmkasten statt. Darüber hinaus stehen für die schnelle Inbetriebnahme bzw. Wartung ICNund HAN-Steckverbinder zur Verfügung.

Anschlüsse

Motortyp		
Anbauten	M□□MAXX M□□MABR M□□MARS M□□MAIG M□□MAAG	M□□MABS M□□MABI M□□MABA

	P ₁	P ₂	P ₃	P ₄	P ₆	P ₁	P ₂	P ₃	P ₄	P ₆
	[mm]									
063	M16x1.5	M20x1.5								
071	MIOXI.J	M2UX1.5								
080										
090	M20x1.5	M25x1.5			M16x1.5	M25x1.5	M32x1.5	M20x1.5	M16x1.5	M16x1.5
100	MIZUXI.3	1012381.3								
112										
132	M25x1.5	M32x1.5	M20x1.5	M16x1.5						

Lenze | V05-de_DE-08/2018 5.7 - 49


Steckverbinder

Für die Drehstrommotoren stehen die Steckverbinder in den Ausführungen ICN, HAN und M12 (nur für Inkrementalgeber IG128-24V-H) zur Verfügung.

Steckverbinder ICN

Der Anschluss der Leistung, Bremse und Temperaturüberwachung erfolgt in einem Steckverbinder.

Der Anschluss an die Rückführung und dem Fremdlüfter wird jeweils über einen separaten Steckverbinder realisiert.

Anschluss der Leistung, Bremse und Temperaturüberwachung

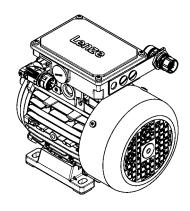
Für den Leistungsanschluss des Steckverbinders ist ein max. Motorbemessungsstrom von 16 A zulässig.

Die Steckverbinder sind um 270° drehbar und mit einem Bajonettverschluss für SpeedTec-Steckverbinder ausgestattet. Da der Verschluss des Steckverbinders zusätzlich mit herkömmlichen Überwurfmuttern kompatibel ist, können vorhandene Gegenstecker mit Schraubverschluss problemlos weiterverwendet werden. Die Festlegung der Motorschaltung erfolgt im Klemmenkasten.

► ICN M23 6-polig

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	BD1/BA1	Bremse +/AC	
2	BD2 / BA2	Bremse -/AC	1 20 6
PE	PE	Schutzleiter	
4	U	Leistung Strang U	50
5	V	Leistung Strang V	40
6	W	Leistung Strang W	

► ICN M23 8-polig


Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	U	Leistung Strang U	
PE	PE	Schutzleiter	
3	W	Leistung Strang W	D T 3
4	V	Leistung Strang V	(CO O 4
Α	TB1/TP1 R1	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
В	TB2 / TP2 R2	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	BOA
С	BD1/BA1	Bremse +/AC	
D	BD2 / BA2	Bremse -/AC	

Steckverbinder ICN

Anschluss der Rückführung

Optional sind alle Gebersysteme (Ausnahme: IG128-24V-H) auch mit einem am Motorklemmenkasten befestigten ICN-Steckverbinder erhältlich, so dass eine besonders schnelle Inbetriebnahme möglich ist. Die Steckverbinder sind mit einem Bajonettverschluss ausgestattet, der zusätzlich mit herkömmlichen Überwurfmuttern kompatibel ist. Vorhandene Gegenstecker können so problemlos weiterverwendet werden

Resolver

Steckerbe	elegung		
Kontakt	Bezeichnung	Bedeutung	
1	+Ref	Turneformatomiciality and	
2	-Ref	Transformatorwicklungen	
3	+VCC ETS	Versorgung: Elektronisches Typenschild	
4	+COS	Ständerwicklungen Cosinus	Code 0°
5	-COS	Ständerwicklungen Cosinus	
6	+SIN	C+ändomuicklungen Cinus	2 - P - 7
7	-SIN	Ständerwicklungen Sinus	10 12 6 4 1
8			4 11 5
9		Nicht belegt	
10			
11	+PT1000/+KTY	Towns and trueffiller DT1 000 /VTV	
12	-PT1000/-KTY	Temperaturfühler PT1000/KTY	

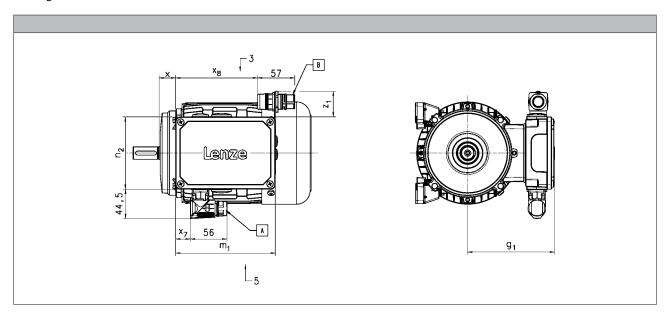
► Inkremental- und SinCos-Absolutwertgeber Hiperface

Steckerbe	legung		
Kontakt Bezeichnung Bedeutung			
1	В	Spur B/+SIN	
2	A ⁻	Spur A invers/-COS	
3	Α	Spur A/+COS	
4	+U _B	Versorgung +	Code 20°
5	GND	Masse	0 8
6	Z ⁻	Nullspur invers/-RS485	
7	Z	Nullspur/+RS485	2 20 12 6
8		Nicht belegt	3 A 113
9	B ⁻	Spur B invers/-SIN	
10		Nicht belegt	
11	+PT1000/+KTY	Tomporaturfühler DT1000/VTV	
12	-PT1000/-KTY	Temperaturfühler PT1000/KTY	

Lenze | V05-de_DE-08/2018 5.7 - 51

Zubehör

Steckverbinder ICN


Abmessungen der Steckverbinder am Klemmenkasten

Folgende Lagen des Steckverbinders sind möglich:

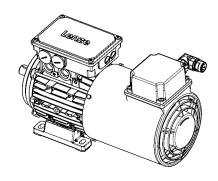
- Leistungsanschluss (A) in Lage 5 und Rückführungsanschluss (B) in Lage 3
- Leistungsanschluss (A) in Lage 3 und Rückführungsanschluss (B) in Lage 5

Bei folgenden Motoren ist nur der Rückführungsanschluss (B) in Lage 3 oder 5 erhältlich:

• Motorgröße 132 ... 180

Motortyp		
	M□□MAXX	M□□MABR
	M□□MARS	M□□MABS
	M□□MAIG	M□□MABI
	M□□MAAG	M□□MABA

	g ₁	x	m ₁	n ₂	x ₇	x ₈	z _{1, max}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	109	17	136	103	16	109	43
071	118	24	130	103	10	109	45
080	132	25					
090	137	29	152	121	23	125	41
100	147	36	132	121	23	125	41
112	158	38					
132	187	51	194	125	27	166	71
160	220	69					
180	239	75	253	152		200	65
200	239	77					
225	348	68	354	204		328	51



T **

Steckverbinder ICN

Anschluss des Fremdlüfters

Optional ist der Fremdlüfter auch mit einem am Klemmenkasten des Fremdlüfters befestigten ICN-Steckverbinder erhältlich, so dass eine besonders schnelle Inbetriebnahme möglich ist. Die Steckverbinder sind mit einem Bajonettverschluss ausgestattet, der zusätzlich mit herkömmlichen Überwurfmuttern kompatibel ist. Vorhandene Gegenstecker können so problemlos weiterverwendet werden.

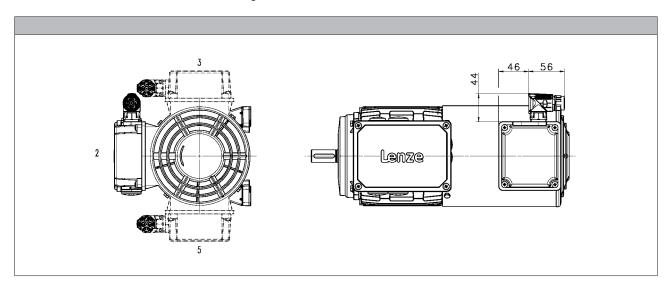
► Fremdlüfter 1-ph

Steckerbel	legung		
Kontakt	Bezeichnung	Bedeutung	
PE	PE	Schutzleiter	- D
1	U1	Lüfter	6
2	U2	Luitei	5 0 1
3			
4			4
5		Nicht belegt	
6			ž

► Fremdlüfter 3-ph

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
PE	PE	Schutzleiter	. •
1	U	Leistung Strang U	6
2		Nicht belegt	5 0 1
3	V	Leistung Strang V	
4		Night hologt	4
5		Nicht belegt	
6	W	Leistung Strang W	š

Lenze | V05-de_DE-08/2018 5.7 - 53


Zubehör

Steckverbinder ICN

Anschluss des Fremdlüfters

- ► Der Fremdlüfterklemmenkasten ist in den Lagen 2, 3 oder 5 erhältlich
- Zusätzlich kann der Deckel des Fremdlüfterklemmenkastens (inkl. Steckverbinder) bei Bedarf schrittweise um 90° gedreht werden.

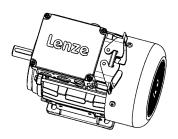
Steckverbinder M12

Anschluss des Inkrementalgebers IG128-24V-H

Dieser Inkrementalgeber ist im Standard mit einem etwa 0,5 m langen Kabelschwanz ausgestattet, an dessen Ende sich ein M12-Steckverbinder nach allgemeinem Industriestandard befindet.

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	+U _B	Versorgung +	
2	В	Spur B	
3	GND	Masse	30 0 2
4	A	Spur A	40 10 1

Lenze | V05-de_DE-08/2018 5.7 - 55


Zubehör

Steckverbinder HAN

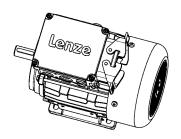
HAN 10 E

Bei dem Rechtecksteckverbinder HAN 10 E werden alle sechs Enden der drei Wicklungsstränge auf die Leistungskontakte ausgeführt. Die Festlegung der Motorschaltung erfolgt somit im Gegenstecker.

Steckerbe	legung	
Kontakt	Bedeutung	
1	Klemmenbrett: U1	
2	Klemmenbrett: V1	
3	Klemmenbrett: W1	
4	Bremse +/AC	
5	Bremse -/AC	780 6 7 8 9 10 \ 780 8 8 8 8 8
6	Klemmenbrett: W2	(((()))
7	Klemmenbrett: U2	
8	Klemmenbrett: V2	
9	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
10	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	

5.7

5.7 - 56 Lenze | V05-de_DE-08/2018



Steckverbinder HAN

HAN modular

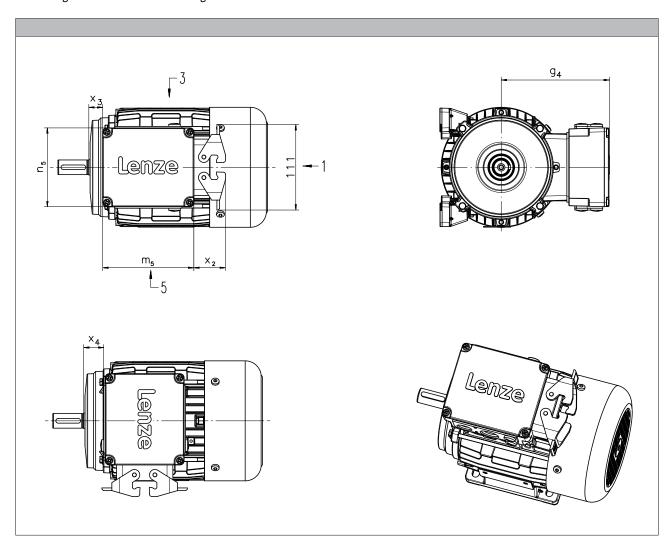
Der Steckverbinder ist je nach Motorbemessungsstrom mit zwei unterschiedlichen Leistungsmodulen verfügbar (16 A oder 40 A). Die Festlegung der Motorschaltung erfolgt im Klemmenkasten und muss vor der Inbetriebnahme geprüft werden.

► HAN modular 16 A

Steckerbe	elegung		
Modul	Kontakt	Bedeutung	
	1	Klemmenbrett: U1	
a	2	Klemmenbrett: V1	
	3	Klemmenbrett: W1	
b		Blindmodul	
	1	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
	2	Bremse +/AC	
	3	Bremse -/AC	
(4	Clairbrighton Cabalthantald	
	5	Gleichrichter: Schaltkontakt	a b c
	6	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	

► HAN modular 40 A

Steckerbo	elegung		
Modul	Kontakt	Bedeutung	
	1	Klemmenbrett: U1	
a	2	Klemmenbrett: V1	
	3	Klemmenbrett: W1	
b		Blindmodul	
С	1	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
	2	Bremse +/AC	
	3	Bremse -/AC	
	4	Gleichrichter: Schaltkontakt	
	5	Gleichnichter: Schaltkontakt	a b c
	6	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	


Lenze | V05-de_DE-08/2018 5.7 - 57

Steckverbinder HAN

► Der Anschluss des Steckverbinders wurde in der Lage 1 dargestellt. Die Lagen 3 und 5 sind ebenfalls möglich.

Motortyp	
	M□□MAXX
	M□□MABR

	g ₄	m ₅	n ₅	x ₂	x ₃	x ₄
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	120		102	41	11	12
071	129				16	17
080	138	118			18	26
090	143				22	30
100	157				29	37
112	164				28	36
132 1)	233	120	180	47	48	18
160	248				72	42

 $^{^{1\!)}}$ Der Anschluss des Steckverbinders in Lage 3 oder 5 ist bei der Motorbauform B5 nicht möglich.

Zubehör

Lenze | V05-de_DE-08/2018 5.7 - 59

Zubehör

IE2-Drehstrommotoren MH

0.75 ... 45 kW

IE2-Drehstrommotoren MH

Inhalt

Allgemeines	Kurzzeichenlegende	5.8 - 4
	Produktschlüssel	5.8 - 5
	Produktinformationen	5.8 - 6
	Funktionen und Eigenschaften	5.8 - 7
	Zuordnung Motor – Inverter	5.8 - 11
	Dimensionierung	5.8 - 13
 Technische Daten	Normen und Einsatzbedingungen	5.8 - 1 5
	Zulässige Radial- und Axialkräfte	5.8 - 16
	Bemessungsdaten 50 Hz	5.8 - 18
	Bemessungsdaten 60 Hz	5.8 - 19
	Bemessungsdaten 87 Hz	5.8 - 20
	Abmessungen, eigenbelüftet (4-polig)	5.8 - 22
	Abmessungen, fremdbelüftet (4-polig)	5.8 - 28
	Abmessungen, Inverter 8400 motec	5.8 - 34
 Zubehör	Federkraftbremse	5.8 - 37
	Rückführungen	5.8 - 49
	Fremdlüfter	5.8 - 51
	Temperaturüberwachung	5.8 - 53
	Klemmenkasten	5.8 - 55
	Steckverbinder	5.8 - 56
	Steckverbinder ICN	5.8 - 56
	Steckverbinder M12	5.8 - 61
	Steckverhinder HAN	5.8 - 62

IE2-Drehstrommotoren MH

Allgemeines

Kurzzeichenlegende

η _{100 %}	[%]	Wirkungsgrad
η _{75 %}	[%]	Wirkungsgrad
η _{50 %}	[%]	Wirkungsgrad
cos φ		Leistungsfaktor
I _N	[A]	Bemessungsstrom
I _{max}	[A]	Max. Stromaufnahme
J	[kgcm²]	Massenträgheitsmoment
m	[kg]	Masse
Ma	[Nm]	Anlaufmoment
M _b	[Nm]	Kippmoment
M _{max}	[Nm]	Max. Drehmoment
M _N	[Nm]	Bemessungsdrehmoment
n _N	[r/min]	Bemessungsdrehzahl
P _N	[kW]	Bemessungsleistung
P	[kW]	Max Leistungsaufnahme

PN	[KVV]	Bemessungsieistung		
P _{max}	[kW]	Max. Leistungsaufnahme		
CE	Communau	ıté Européenne		
CSA	Canadian S	tandards Association		
DIN	Deutsches	Institut für Normung e.V.		
EMV	Elektromag	Elektromagnetische Verträglichkeit		
EN	Europäische Norm			
IEC	International Electrotechnical Commission			
IM	International Mounting Code			
IP	International Protection Code			
NEMA	National Electrical Manufacturers Association			
UI	Underwriters Laboratory Listed Product			

Underwriters Laboratory Recognized Product

Zertifikat Zollunion Russland / Belarus / Kasachstan

Kombiniertes Prüfzeichen der UL für USA und Kanada

Verband deutscher Elektrotechniker

China Compulsory Certificate

UkrSEPRO Zertifikat für die Ukraine

U _{max}	[V]	Max. Netzspannung
U _{min}	[V]	Min. Netzspannung
U _{N, Δ}	[V]	Bemessungsspannung
U _{N, Y}	[V]	Bemessungsspannung

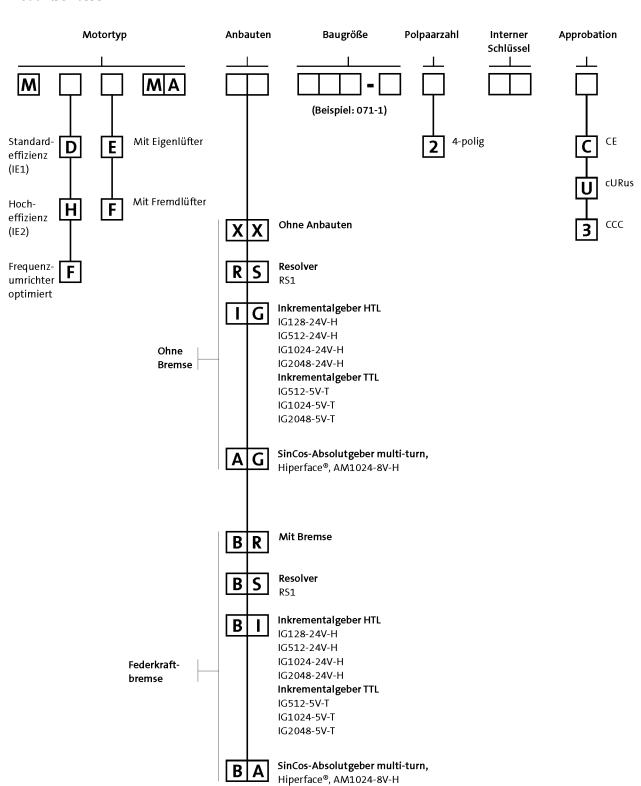
5.8

UR

VDE

CCC

EAC


cURus

5.8 - 4 Lenze | V05-de_DE-08/2018

20.3

Produktschlüssel

Lenze | V05-de_DE-08/2018 5.8 - 5

Produktinformationen

Seit Langem sind Drehstrommotoren von Lenze in nahezu allen Industriebereichen etabliert. Aufbauend auf diese langjährige Erfahrung im Bereich der Antriebs- und Automatisierungstechnik wurde ein Motor entwickelt, der dafür sorgt, Ihren Ansprüchen an Produktivität, Qualität und Verfügbarkeit optimal gerecht zu werden. Die Drehstrommotoren der L-force-Reihe zeichnen sich vor allem durch den umfangreichen Baukasten aus. Eine Vielzahl von Optionen ermöglicht es Ihnen, die Antriebseigenschaften genau auf Ihre Applikation anzupassen. Wir nennen dies Rightsizing.

L-force Drehstrommotoren MH sind in einem Leistungsbereich von 0.75 ... 45 kW lieferbar und entsprechen der Effizienzklasse IE2 (Hocheffizienz) entsprechend IEC 60034-30.

Da fast alle IE2-Motoren in den gleichen Baugrößen wie die Standardeffizienz-Motoren ausgeführt sind, ist ein Umstieg besonders einfach. Die Energieeffizienz der L-force Drehstrommotoren MH wurden von Underwriters Laboratories (UL) als unabhängige Dritte zugelassen/genehmigt/gebilligt.

Grundausführungen

- Mit den Bauformen B3, B5 und B14 sowie den nach IEC 60072-1 bzw. DIN EN 50347 standardisierten Abmessungen sind die Motoren universell einsetzbar.
- Die standardmäßig integrierten Temperatursensoren ermöglichen eine permanente Temperaturüberwachung und sind auf die Wärmeklasse F (155°C) der Motorwicklung abgestimmt.
- In der Basisausführung sind die Motoren durch die Schutzart IP55 den Umgebungsbedingungen angepasst.
- Bei schwierigen Einsatzbedingungen steht das Oberflächen- und Korrosionsschutzsystem zur Verfügung, das den Motor zuverlässig vor aggressiven Medien schützt.

Optionen

- Verschiedene Bremsengrößen jeweils mit mehreren Bremsmomenten verfügbar – lassen sich mit den Drehstrommotoren kombinieren.
- Die LongLife-Ausführung der Bremse ermöglicht problemlos über 10×10^6 Schaltzyklen.
- Zur Drehzahl- und Positionserfassung ist der Anbau eines Resolvers sowie verschiedener Inkremental- und Absolutwertgeber möglich.
- Zur schnellen Inbetriebnahme sind die Motoren auch mit Steckverbindern für Leistungsanschlüsse, Bremse, Fremdlüfter und Rückführung verfügbar.
- Statt eines Eigenlüfters kann der Motor optional mit einem Fremdlüfter ausgestattet werden. Auch bei Drehzahlen unter 20 Hz ist dann keine Drehmomentreduzierung notwendig.
- Für Antriebsaufgaben in dezentralen Anwendungen kann der Motor mit dem auf den Klemmenkasten montierten Inverter motec bezogen werden.
- Die Motoren sind mit Approbationen nach cURus, GOST-R, CCC und UkrSepro erhältlich.

5.8

Funktionen und Eigenschaften

Da						
Baugröße		000		100		
Motor		080	090	100		
Bauform		В3				
		B5 B14				
Wellenzapfen				1		
d x l	[mm]	19 x 40	24 x 50	28 x 60		
Federkraftbremse						
Ausführung		Standard- oder LongLife-Ausführung Reduziertes, Standard oder erhöhtes Bremsmoment Mit Gleichrichter Mit Handlüfthebel Geräuscharm				
Rückführung						
Ausführung		Resolver Inkrementalgeber Absolutwertgeber (Multi-turn)				
Temperatursensor						
Thermokontakt			TKO			
Temperaturfühler			PT1000			
Kaltleiter			PTC			
Motoranschluss						
Leistungsanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN10E Steckverbinder HAN modular				
Bremsenanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular Steckverbinder HAN10E				
Fremdlüfteranschluss		Klemmenkasten Steckverbinder ICN				
Rückführungsanschluss			Klemmenkasten Steckverbinder ICN			
Temperatursensoranschluss		Klemmenkasten TKO oder PTC bei Steckverbinder im Leistungsanschluss PT1000 bei Steckverbinder im Rückführungsanschluss				
Wellenlagerung						
Lage des Festlagers			lormmotoren (B3, B5, B14): B-Seit ren für Getriebe (Direktanbau): A			
Lagerart		Rillenkugellager mit hochtem	nperaturbeständigem Fett, 2 Dich	tscheiben bzw. Deckscheiben		
Farbe				<u> </u>		
		Lackierung in verschie	unlackiert grundiert denen Korrosionsschutzausführu	ngen nach RAL-Farben		

Lenze | V05-de_DE-08/2018 5.8 - 7

5.8

Funktionen und Eigenschaften

Baugröße				
Motor		112	132	160
Bauform				
		В3	В	33
		B5 B5		
		B14		
Wellenzapfen			1	ı
dxl	[mm]	28 x 60	38 x 80	42 x 110
Federkraftbremse				
Ausführung		Reduzieri	Standard-Ausführung tes, Standard oder erhöhtes Brem Mit Gleichrichter Mit Handlüfthebel Geräuscharm	smoment
Rückführung				
Ausführung			Resolver Inkrementalgeber Absolutwertgeber (Multi-turn)	
Temperatursensor				
Thermokontakt			ТКО	
Temperaturfühler			PT1000	
Kaltleiter			PTC	
Motoranschluss				
Leistungsanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN10E Steckverbinder HAN modular	Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular	Klemmenkasten Steckverbinder HAN modular
Bremsenanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular Steckverbinder HAN10E	Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular	Klemmenkasten Steckverbinder HAN modular
Fremdlüfteranschluss			Klemmenkasten Steckverbinder ICN	
Rückführungsanschluss			Klemmenkasten Steckverbinder ICN	
Temperatursensoranschluss		Klemmenkasten TKO oder PTC bei Steckverbinder im Leistungsanschluss PT1000 bei Steckverbinder im Rückführungsanschluss		
Wellenlagerung				
Lage des Festlagers		Normmotoren (B3, B5, B14): B-Seite Motoren für Getriebe (Direktanbau): A-Seite		
Lagerart		Rillenkugellager mit hochten	nperaturbeständigem Fett, 2 Dich	tscheiben bzw. Deckscheiben
Farbe				
		unlackiert grundiert Lackierung in verschiedenen Korrosionsschutzausführungen nach RAL-Farben		

٥.٥

5.8 - 8 Lenze | V05-de_DE-08/2018

Funktionen und Eigenschaften

Baugröße				
Motor		180	200	225
Bauform				
		B3		
			B5	
Wellenzapfen			I	1
dxl	[mm]	48 x 110	55 x 110	60 x 140
Federkraftbremse				
Ausführung		Standard-Ausführung Reduziertes, Standard oder erhöhtes Bremsmoment Mit Gleichrichter Mit Handlüfthebel Geräuscharm		
Rückführung				
Ausführung		Resolver Inkrementalgeber Absolutwertgeber (Multi-turn)		
Temperatursensor			-	
Thermokontakt		TKO		
Temperaturfühler		PT1000		
Kaltleiter		PTC		
Motoranschluss				
Leistungsanschluss			Klemmenkasten	
Bremsenanschluss			Klemmenkasten	
Fremdlüfteranschluss		Klemmenkasten Steckverbinder ICN		
Rückführungsanschluss		Klemmenkasten Steckverbinder ICN		
Temperatursensoranschluss			Klemmenkasten	
Wellenlagerung				
Lage des Festlagers			3, B5, B14): B-Seite (Direktanbau): A-Seite	A-Seite
Lagerart		Rillenkugellager mit hochten	nperaturbeständigem Fett, 2 Dich	tscheiben bzw. Deckscheiben
Farbe			-	
		Lackierung in verschie	unlackiert grundiert denen Korrosionsschutzausführu	ingen nach RAL-Farben

Lenze | V05-de_DE-08/2018 5.8 - 9

5.8

Funktionen und Eigenschaften

Oberflächen- und Korrosionsschutz

Um die Drehstrommotoren je nach Umgebungsbedingungen optimal zu schützen, stehen mit dem Oberflächen- und Korrosionschutzsystem (OKS) maßgeschneiderte Lösungen zur Verfügung.

Verschiedene Oberflächenbeschichtungen sorgen dafür, dass die Motoren auch bei hoher Luftfeuchtigkeit, Außenaufstellung oder athmosphärischen Verunreinigungen zuverlässig funktionieren. Der Farbton des Decklacks kann nach RAL Classic gewählt werden. Darüber hinaus sind die Drehstrommotoren auch unlackiert (ohne OKS) erhältlich.

Oberflächen- und Korrosions- schutzsystem	Anwendungen	Maßnahmen
OKS-G (Grundiert)	Abhängig vom nachträglich aufzubringenden Decklack	2K-PUR-Grundierung (grau)
OKS-S (Small)	StandardanwendungenInnenaufstellung in beheizten GebäudenLuftfeuchtigkeit bis 90%	Oberflächenbeschichtung entspr. Korrosivitätsklas- se C1 (gemäß EN 12944-2)
OKS-M (Medium)	 Innenaufstellung in unbeheizten Gebäuden Überdachte, geschützte Außenaufstellung Luftfeuchtigkeit bis 95 % 	Oberflächenbeschichtung entspr. Korrosivitätsklas- se C2 (gemäß EN 12944-2)
OKS-L (Large) OKS-XL (extra Large)	 Außenaufstellung Luftfeuchtigkeit über 95 % Chemische Industrieanlagen Lebensmittelindustrie 	 Oberflächenbeschichtung entspr. Korrosivitätsklasse C3 (gemäß EN 12944-2) Lüfterhaube und B-Lagerschild zusätzlich grundiert Schrauben verzinkt Kabelverschraubungen mit Dichtringen Korrosionsstabile Bremse mit Abdeckring, nicht rostendem Reibblech und verchromter Ankerscheibe (auf Anfrage) Optionale Maßnahmen: Rezesse am Motor abgedichtet (auf Anfrage)

Aufbau der Oberflächenbeschichtung

Oberflächen- und Korrosions- schutzsystem	Korrosivitätsklasse	Oberflächenbeschichtung	Farbton
	DIN EN ISO 12944-2	Aufbau	
ohne OKS (unlackiert)			
OKS-G (Grundiert)		2K-PUR-Grundierung	
OKS-S (Small)	Vergleichbar mit C1	2K-PUR-Decklack	
OKS-M (Medium)	Vergleichbar mit C2		Standard: RAL 7012
OKS-L (Large) OKS-XL (extra Large)	Vergleichbar mit C3	2K-PUR-Grundierung 2K-PUR-Decklack	Optional: Nach RAL Classic möglich

5.8 - 10 Lenze | V05-de_DE-08/2018

5.8

Zuordnung Motor – Inverter

Bemessungsfrequenz 50/60 Hz

- Dezentraler Inverter 8400 motec (E84DVB)
 Inverter Drives 8400 (E84AV)

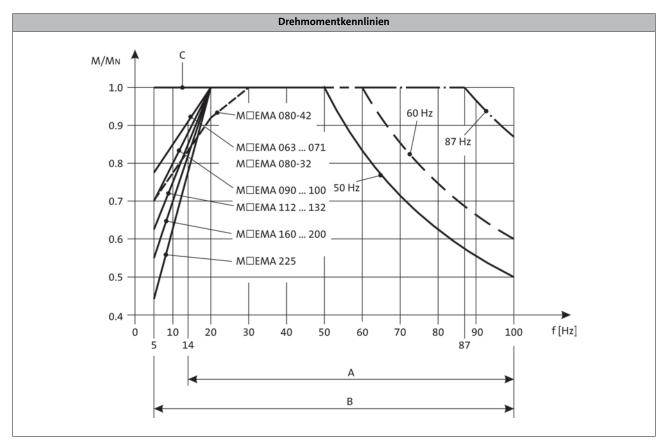
Bemessungsleistung	Produktschlüssel		
	Motor	Umri	chter
P _N			
[kW]			
0.75	MH□□□□□080-32	E84DVB□7514S□□□2□	E84AV
1.10	MH□□□□□090-12	E84DVB□1124S□□□2□	E84AV□□□1124□□□
1.50	MH□□□□□090-32	E84DVB□1524S□□□2□	E84AV□□□1524□□□
2.20	MH□□□□□100-12	E84DVB□2224S□□□2□	E84AV□□□2224□□□
3.00	MH□□□□□100-32	E84DVB□3024S□□□2□	E84AV□□□3024□□□
4.00	MH□□□□□112-22	E84DVB□4024S□□□2□	E84AV□□□4024□□□
5.50	MH□□□□□132-12	E84DVB□5524S□□□2□	E84AV□□□5524□□□
7.50	MH□□□□□132-22	E84DVB□7524S□□□2□	E84AV□□□7524□□□
11.0	MH□□□□□160-22		E84AV 🗆 🗆 1134 🗆 🗆
15.0	MH□□□□□160-32		E84AV□□□1534□□□
18.5	MH□□□□□180-12		E84AV 🗆 🗆 1834 🗆 🗆
22.0	MH□□□□□180-32		E84AV□□□2234□□□
30.0	MH□□□□□200-32		E84AV□□□3034□□□
37.0	MH□□□□□225-12		E84AV□□□3734□□□
45.0	MH□□□□□225-22		E84AV□□□4534□□□

5.8 - 11 Lenze | V05-de_DE-08/2018

Zuordnung Motor – Inverter

Bemessungsfrequenz 87 Hz

- Dezentraler Inverter 8400 motec (E84DVB)
 Inverter Drives 8400 (E84AV)


Bemessungsleistung	Produktschlüssel		
	Motor	Umri	chter
P _N			
[kW]			
1.35	MH□□□□□080-32	E84DVB□1524S□□□2□	E84AV 🗆 🗆 1524 🗆 🗆
2.00	MH□□□□□090-12	E84DVB□2224S□□□2□	E84AV 🗆 🗆 2224 🗆 🗆
2.70	MH□□□□□090-32	E84DVB□3024S□□□2□	E84AV□□□3024□□□
3.90	MH□□□□□100-12	E84DVB□4024S□□□2□	E84AV 🗆 🗆 4024 🗆 🗆
5.40	MH□□□□□100-32	E84DVB□5524S□□□2□	E84AV 🗆 🗆 5524 🗆 🗆
7.10	MH□□□□□112-22	E84DVB□7524S□□□2□	E84AV 🗆 🗆 7524 🗆 🗆
9.70	MH□□□□□132-12		E84AV 🗆 🗆 1134 🗆 🗆
13.2	MH□□□□□132-22		E84AV 🗆 🗆 1534 🗆 🗆
19.4	MH□□□□□160-22		E84AV 🗆 🗆 2234 🗆 🗆
26.4	MH□□□□□160-32		E84AV
32.5	MH□□□□□180-12		E84AV□□□3734□□□

5.8 - 12 Lenze | V05-de_DE-08/2018 _____

Dimensionierung

Drehmomentreduzierung bei niedrigen Motorfrequenzen

Das Diagramm zeigt die motorbaugrößenabhängige Drehmomentreduzierung bei eigenbelüfteten Motoren unter Berücksichtigung des thermischen Verhaltens beim Betrieb am Inverter.

- A = Betrieb mit Eigenlüfter und Bremse
- $\label{eq:B-B-B} \textbf{B} = \textbf{Betrieb mit Eigenl\"{u}fter und Bremsenansteuerung } \textbf{,Haltestromabsenkung} \textbf{``Haltestromabsenkung''}$
- ▶ Die in diesem Katalog genannten technischen Daten der Motoren im Inverterbetrieb gelten für den Betrieb an einem Lenze-Inverter. Fragen Sie im Zweifelsfall den Hersteller des Inverters, ob das Gerät den Motor mit den genannten technische Daten (z.B. Stellbereich, Eckfrequenz) betreiben kann.

Für eine genaue Antriebsauslegung können Sie unsere Projektierungssoftware den Drive Solution Designer nutzen.

Mit dem Drive Solution Designer können Sie die Antriebsauslegung schnell und mit einer hohen Qualität ausführen.

Die Software beinhaltet fundiertes und in der Praxis erprobtes Wissen über Antriebsanwendungen und elektromechanische Antriebskomponenten.

Bitte sprechen Sie Ihre zuständige Lenze Vertriebsgesellschaft an.

Lenze | V05-de_DE-08/2018 5.8 - 13

IE2-Drehstrommotoren MH

Allgemeines

5.8

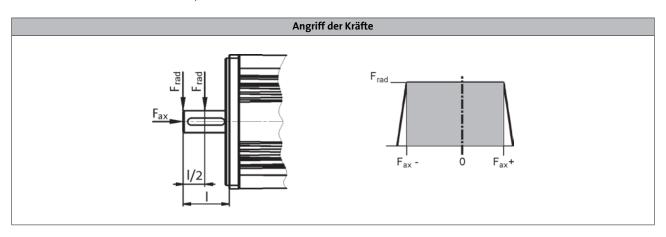
5.8 - 14 Lenze | V05-de_DE-08/2018

Normen und Einsatzbedingungen

Schutzart			
EN 60529			IP55 1) IP65 1) IP66 1)
Energieeffizienzklasse			
IEC 60034-30			IE2
IEC 60034-2-1			Methodik Wirkungsgradmessung
Konformität			
CE			Niederspannungsrichtlinie
			2006/95/EG
EAC			TP TC 004/2011 (TR ZU 004/2011)
Approbation			
			UkrSEPRO
ссс			GB Standard 12350-2009
CSA			CSA 22.2 No. 100 CSA C390-10
cURus ²⁾			File-No. E210321 UL 1004-1 UL 1004-8
Wärmeklasse			
IEC/EN 60034-1; Ausnutzung			В
IEC/EN 60034-1; Isolationsaufbau (Lackdraht)			F
Min. Betriebs-Umgebungstemperatur			
	T _{opr,min}	[°C]	-20
Max. Betriebs-Umgebungstemperatur			
	T _{opr,max}	[°C]	40
Mit Leistungsreduzierung	T _{opr,max}	[°C]	60
Aufstellungshöhe			
über NN	H _{max}	[m]	4000
Max. Drehzahl			
	n _{max}	[r/min]	4500

¹⁾ Abweichende Schutzarten bei Ausführungen: Mit Bremse IP55 (mit Handlüfthebel IP54). Mit Resolver RS1 IP54. Mit HTL Jukremental IG128-24V-H IP54.

► In der Europäischen Union schreibt die ErP-Richtlinie Mindestwirkungsgrade für Drehstrommotoren vor. Drehstrommotoren, die nicht dieser Richtlinie entsprechen, sind nicht CE-konform und dürfen nicht im Europäischen Wirtschaftsraum in Verkehr gebracht werden. Nähere Informationen zur ErP-Richtlinie, zu Effizienzregularien in weiteren Ländern sowie zu den betroffenen Lenze-Produkten finden Sie in der Broschüre "Internationale Effizienzrichtlinien für Drehstrommotoren".


Lenze | V05-de_DE-08/2018 5.8 - 15

Mit HTL-Inkremental IG128-24V-H IP54.

2) Motorbaugröße 225 in Vorbereitung.

Zulässige Radial- und Axialkräfte

► Kräfte bei mittlerer Drehzahl 2000 r/min.

Kraftangriff bei I/2

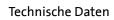
	Lagerlebensdauer L _{10h}											
		10000 h			20000 h			30000 h			50000 h	
	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad} [N]	F _{ax,-} [N]	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+} [N]
063	600	-600	300	470	-480	180	410	-430	120	350	-370	70
071	740	-800	470	590	-630	300	510	-550	220	430	-470	140
080	960	-1090	580	770	-860	350	670	-760	250	570	-650	140
090	1050	-1160	630	840	-920	390	730	-800	280	620	-690	160
100	1490	-1490	910	1190	-1160	580	1050	-1010	430	890	-860	270
112	2250	-2330	1340	1790	-1830	840	1570	-1600	610	1330	-1360	370
132	3 3 0 0	-2150	1190	2640	-1670	710	2320	-1440	480	1970	-1210	250
160	3750	-2700	1520	3000	-2130	950	2640	-1830	670	2250	-1440	360
180	5620	-3270	1790	4500	-2580	1120	3960	-2210	790	3 3 7 5	-1750	420
200	5620	-3270	1790	4500	-2580	1120	3960	-2210	790	3 3 7 5	-1750	420
225	5 2 0 0	-3100	3900	3900	-2100	2900	3 3 0 0	-1300	2100	2650	-1000	1800

- ▶ Die Werte der Lagerlebensdauer L_{10h} beziehen sich auf eine mittlere Drehzahl von 2000 r/min und werden, abhängig von den Umgebungstemperaturen, zusätzlich durch die Fettgebrauchsdauer eingeschränkt.
- Die Angaben der Axialkräfte beziehen sich auf die max. Radialkraft bei entsprechender Lagerlebensdauer.

ГΟ

5.8 - 16

Zulässige Radial- und Axialkräfte


► Kräfte bei mittlerer Drehzahl 2000 r/min.

Kraftangriff bei l

	Lagerlebensdauer L _{10h}												
		10000 h			20000 h			30000 h			50000 h		
	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	
	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	
063	400	-600	300	370	-480	180	320	-430	120	300	-370	70	
071	680	-800	470	540	-630	300	470	-550	220	400	-470	140	
080	880	-1090	580	700	-860	350	610	-760	250	520	-650	140	
090	940	-1160	630	750	-920	390	660	-800	280	560	-690	160	
100	1350	-1490	910	1080	-1160	580	940	-1010	430	800	-860	270	
112	2040	-2330	1340	1620	-1830	840	1420	-1600	610	1210	-1360	370	
132	3020	-2150	1190	2420	-1670	710	2120	-1440	480	1800	-1210	250	
160	3410	-2700	1520	2730	-2130	950	2400	-1830	670	2050	-1440	360	
180	4550	-3270	1790	3640	-2580	1120	3200	-2210	790	2730	-1750	420	
200	4550	-3270	1790	3640	-2580	1120	3200	-2210	790	2730	-1750	420	
225	4800	-3100	3900	3600	-2100	2900	3000	-1300	2100	2400	-1000	1800	

- ▶ Die Werte der Lagerlebensdauer L_{10h} beziehen sich auf eine mittlere Drehzahl von 2000 r/min und werden, abhängig von den Umgebungstemperaturen, zusätzlich durch die Fettgebrauchsdauer eingeschränkt.
- ▶ Die Angaben der Axialkräfte beziehen sich auf die max. Radialkraft bei entsprechender Lagerlebensdauer.

Lenze | V05-de_DE-08/2018 5.8 - 17

Bemessungsdaten 50 Hz

4-polige Motoren

	P _N	n _N	U _{N, Δ} 2)	I _{N, Δ}	U _{N, Y}	I _{N, Y}	I _a /I _N
			± 10 %		± 10 %		
	[kW]	[r/min]	[V]	[A]	[V]	[A]	
MH□□□□□080-32	0.75	1410	230	3.10	400	1.80	5.0
MH□□□□□090-12	1.10	1430	230	4.60	400	2.70	5.4
MH□□□□□090-32	1.50	1435	230	5.80	400	3.30	6.3
MH□□□□□100-12	2.20	1445	230	8.60	400	5.00	6.0
MH□□□□□100-32	3.00	1445	230	12.1	400	7.00	6.5
MH□□□□□112-22	4.00	1455	230	14.5	400	8.40	6.0
MH□□□□□132-12	5.50	1470	230 400³)	20.6 11.9	400	11.9	6.1
MH□□□□□132-22	7.50	1460	230 400³)	27.0 15.6	400	15.6	8.5
MH0000160-22	11.0	1470	230 400³)	37.7 21.8	400	21.8	8.0
MH□□□□□160-32	15.0	1470	230 400³)	50.3 29.1	400	29.1	8.2
MH□□□□□180-12	18.5	1475	230 400³)	58.8 34.0	400	34.0	8.4
MH□□□□□180-32	22.0	1470	230 400³)	68.9 39.8	400	39.8	7.8
MH□□□□200-32	30.0	1465	230 400³)	93.8 53.9	400	53.9	7.0
MH□□□□□225-12	37.0	1483	230 400³)	113 65.0	400	65.0	7.5
MH□□□□□225-22	45.0	1480	230 400 ³⁾	137 79.0	400	79.0	7.6

	M _N	M _a	M _b	cos φ	η _{50 %}	η _{100 %}	J 1)	m 1)
	[Nm]	[Nm]	[Nm]		[%]	[%]	[kgcm²]	[kg]
MH□□□□□080-32	5.08	12.0	12.1	0.84	74.9	79.6		11.0
MH□□□□□090-12	7.35	20.3	24.2	0.76	77.4	82.0		16.0
MH□□□□□090-32	10.0	33.0	34.0	0.76	82.2	82.8		18.0
MH□□□□□100-12	14.5	48.0	55.0	0.80	85.4	86.3		24.0
MH□□□□□100-32	19.8	67.0	76.0	0.73	83.8	85.5		26.5
MH□□□□□112-22	26.3	81.0	100	0.80	86.3	88.3		38.0
MH□□□□□132-12	35.7	90.0	108	0.77	88.2	89.2		59.0
MH□□□□□132-22	49.1	110	175	0.79	87.6	88.7		66.0
MH□□□□□160-22	71.5	164	243	0.82	89.4	89.8		109
MH□□□□□160-32	97.4	224	292	0.82	90.2	90.6		124
MH□□□□□180-12	120	359	371	0.86	90.8	91.2		175
MH□□□□□180-32	143	400	372	0.87	91.4	91.6		180
MH□□□□□200-32	196	469	528	0.87	91.9	92.3		315
MH□□□□□225-12	238	620	620	0.87	94.0	94.3		395
MH□□□□□225-22	290	698	669	0.88	93.7	94.3		415

¹⁾ Ohne Zubehör

5.8

²⁾ Der Betrieb bei 87 Hz ist mit 4-poligen Motoren möglich, deren Bemessungsdaten bei 50 Hz die Spannungswerte Δ 230 V aufweisen. Bei den Motorgrößen 132-12 bis 225-22 muss bei der Bestellung zusätzlich die benötigte Spannung angeben werden.

die benötigte Spannung angeben werden.

³⁾ Stern-Dreieck-Anlauf bei 400 V möglich.

Bemessungsdaten 60 Hz

4-polige Motoren

	P _N	n _N	U _{N, Δ} 2)	I _{N, Δ}	U _{N, Y}	I _{N, Y}	I _a /I _N
			± 10 %		± 10 %		
	[kW]	[r/min]	[V]	[A]	[V]	[A]	
MH□□□□□080-32	0.75	1720	265	2.80	460	1.60	5.8
MH□□□□□090-12	1.10	1740	265	4.00	460	2.30	6.5
MH□□□□□090-32	1.50	1745	265	5.10	460	3.00	7.2
MH□□□□□100-12	2.20	1750	265	7.70	460	4.40	6.9
MH□□□□□100-32	3.00	1755	265	10.6	460	6.10	7.7
MH□□□□□112-22	4.00	1760	265	12.8	460	7.40	7.0
MH□□□□□132-12	5.50	1775	265 460³)	18.0 10.4	460	10.4	7.1
MH□□□□132-22	7.50	1765	265 460³)	24.2 14.0	460	14.0	9.7
MH□□□□□160-22	11.0	1775	265 460³)	32.5 18.7	460	18.7	9.4
MH□□□□□160-32	15.0	1775	265 460³)	44.1 24.5	460	24.5	9.8
MH□□□□□180-12	18.5	1775	265 460³)	51.1 29.4	460	29.4	9.7
MH□□□□□180-32	22.0	1775	265 460³)	59.7 34.4	460	34.4	9.0
MH□□□□□200-32	30.0	1770	265 460³)	80.7 46.5	460	46.5	8.1
MH□□□□□225-12	37.0	1787	265 460 ³⁾	92.5 53.4	460	53.4	8.7
MH□□□□□225-22	45.0	1784	265 460 ³⁾	111 64.2	460	64.2	8.8

	M _N	M _a	M _b	cos ф	η _{50 %}	η _{100 %}	J 1)	m 1)
	[Nm]	[Nm]	[Nm]		[%]	[%]	[kgcm²]	[kg]
MH□□□□□080-32	4.16	9.37	9.89	0.82	77.9	82.5		11.0
MH□□□□□090-12	6.04	17.0	20.0	0.71	79.3	84.0		16.0
MH□□□□□090-32	8.21	27.0	28.0	0.75	79.3	84.0		18.0
MH□□□□□100-12	12.0	40.0	47.0	0.78	82.6	87.5		24.0
MH□□□□□100-32	16.3	55.0	64.0	0.71	84.2	87.5		26.5
MH□□□□□112-22	21.7	69.0	84.0	0.79	84.2	87.5		38.0
MH□□□□□132-12	29.6	74.0	92.0	0.77	86.1	89.5		59.0
MH□□□□□132-22	40.6	92.0	147	0.79	86.1	89.5		66.0
MH□□□□□160-22	59.2	148	231	0.81	89.3	91.0		109
MH□□□□□160-32	80.7	210	274	0.81	89.3	91.0		124
MH□□□□□180-12	99.5	338	348	0.86	90.6	92.4		175
MH□□□□□180-32	118	379	355	0.87	90.6	92.4		180
MH□□□□□200-32	162	440	505	0.87	92.0	93.0		315
MH□□□□□225-12	198	590	590	0.87	92.0	93.0		395
MH□□□□□225-22	241	660	635	0.88	92.6	93.6		415

¹⁾ Ohne Zubehör

Lenze | V05-de_DE-08/2018 5.8 - 19

5.8

²⁾ Der Betrieb bei 87 Hz ist mit 4-poligen Motoren möglich, deren Bemessungsdaten bei 60 Hz die Spannungswerte Δ 265 V aufweisen. Bei den Motorgrößen 132-12 bis 225-22 muss bei der Bestellung zusätzlich die benötigte Spannung angeben werden.

die benötigte Spannung angeben werden.

³⁾ Stern-Dreieck-Anlauf bei 460 V möglich.

Technische Daten

Bemessungsdaten 87 Hz

4-polige Motoren

	P _N	n _N	M _N	M _{max}	U _{N, Δ}	I _{N, Δ}	соѕф	η _{50 %}	η _{75 %}	η _{100 %}	J 1)	m 1)
					± 10 %							
	[kW]	[r/min]	[Nm]	[Nm]	[V]	[A]		[%]	[%]	[%]	[kgcm²]	[kg]
MH□□□□□080-32	1.35	2520	5.12	20.0	400	3.10	0.84	77.3	81.6	83.5	28.0	11.0
MH□□□□□090-12	2.00	2540	7.52	30.0	400	4.60	0.78	80.4	84.9	86.5	32.0	16.0
MH□□□□□090-32	2.70	2545	10.1	40.0	400	5.80	0.76	82.3	85.5	86.0	36.0	18.0
MH□□□□□100-12	3.90	2555	14.6	60.0	400	8.60	0.83	85.7	89.6	90.0	61.0	24.0
MH□□□□□100-32	5.40	2555	20.2	80.0	400	12.1	0.76	84.7	87.9	88.5	66.0	26.5
MH□□□□□112-22	7.10	2565	26.4	106	400	14.5	0.83	87.4	90.2	90.9	135	38.0
MH□□□□□132-12	9.70	2580	35.9	144	400	20.6	0.82	88.2	91.4	91.8	290	59.0
MH□□□□□132-22	13.2	2570	49.1	196	400	27.0	0.82	88.2	90.1	90.7	336	66.0
MH□□□□□160-22	19.4	2580	71.8	287	400	37.7	0.81	90.6	91.0	91.6	570	109
MH□□□□□160-32	26.4	2580	97.7	391	400	50.3	0.81	91.4	91.0	91.6	760	124
MH□□□□□180-12	32.5	2585	120	480	400	58.8	0.86	92.0	92.2	92.8	1390	175
MH□□□□□180-32	38.7	2580	143	573	400	68.9	0.87	92.1	92.9	93.4	1440	180
MH□□□□□200-32	52.7	2575	196	782	400	92.6	0.87	92.6	92.7	93.2	1850	315
MH□□□□□225-12	64.0	2593	236	920	400	113	0.87	93.0	94.4	94.8	4610	395
MH□□□□□225-22	78.0	2590	288	1150	400	137	0.85	93.5	94.3	94.7	5300	415

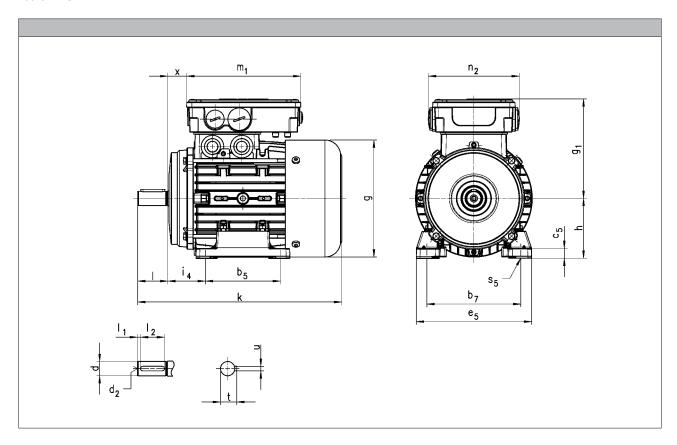
¹⁾ Ohne Zubehör

5.8

5.8 - 20 Lenze | V05-de_DE-08/2018

IE2-Drehstrommotoren MH

Technische Daten



Lenze | V05-de_DE-08/2018 5.8 - 21

Abmessungen, eigenbelüftet (4-polig)

Bauform B3

Motortyp												
			MHE	MAXX					MHE	MABR		
	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	272	156	132	25			345	154	132	25		
090	337	176	137	29			399	176	137	29		
100	382 1)	194	147	36	152	121	4581)	194	147	36	152	121
100	397 ²⁾	194	147	50			473 2)	194	147	30		
112	436	218	158	38			526	218	158	38		
132	497	258	187	51	194	125	576	258	187	51	194	125
160	598 3)	310	220	69			703 3)	313	220	69		
100	642 4)	310	220	09	253	152	747 4)	313	220	09	253	152
180	671	348	239	75	233	132	784	351	239	75	233	132
200	728	351	239	77			841	221	239	77		
225	961	447	348	68	354	204	1074	447	348	68	354	204

^{1) 100-12} 2) 100-32 3) 160-22 4) 160-32

Abmessungen, eigenbelüftet (4-polig)

Bauform B3

Motortyp		
	MHEMARS	MHEMABS
	MHEMAIG	MHEMABI
	MHEMAAG	MHEMABA

	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	369	156	132	25			383	156	142	24		
090	418	178	137	29			436	176	147	28		
100	463 1)	196	147	36	152	121	483 1)	194	158	35	194	125
100	478 2)	190	147	30			494 2)	194	138	33	194	123
112	516	220	158	38			556	218	168	37		
132	599	261	187	51	194	125	621	258	187	51		
160	681 3)	313	220	69			789³)	313	220	69		
160	725 4)	313	220	09	253	152	8334)	313	220	09	253	152
180	750	351	239	75	233	132	864	351	239	75	233	132
200	807	331	239	77			920	331	239	77		
225	1040	447	348	68	354	204	1153	447	348	68	354	204

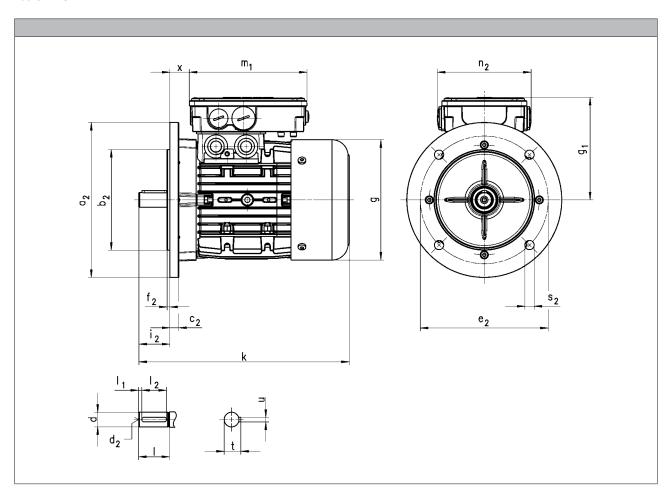
	d	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6	m6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	19			M6	40	4.0	32	21.5	6.0
090	24			M8	50		40	27.0	
100	28			M10	60		50	31.0	8.0
112	20			MITO	00		30	31.0	
132		38		M12	80	5.0	70	41.0	10.0
160		42		M16		3.0		45.0	12.0
180		48		MITO	110		100	51.5	14.0
200			55	M20				59.0	16.0
225			60	14120	140		130	64.0	18.0

	b ₇	i ₄	b ₅	e ₅	h	c ₅	s ₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	125	50	100	154	80	13	10.0
090	140	56	125	174	90	13	10.0
100	160	63	140	194	100	15	
112	190	70	140	223	112	14	12.0
132	216	89	178	260	132	16	
160	254	108	210 3)	305	160	22	
100	234	108	254 4)	303	100	22	14.5
180	279	121	241 5)	350	180	23	14.5
180	279	121	279 6)	330	100	23	
200	318	133	305	400	200	32	
225	356	149	286 7)	440	225	34	18.5
223	550	149	311 8)	770	223	J4	

^{1) 100-12} 2) 100-32 3) 160-22

5.8 - 23 Lenze | V05-de_DE-08/2018

⁴⁾ 160-32


^{5) 180-12} 6) 180-32 7) 225-12 8) 225-22

Technische Daten

Abmessungen, eigenbelüftet (4-polig)

Bauform B5

Motortyp													
			MHE	MAXX			MHEMABR						
	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
080	272	156	132	25			345	154	132	25			
090	337	176	137	29	-		399	176	137	29			
100	382 1)	194	147	36	152	121	4581)	194	147	36	152	121	
100	397 2)	194	147	50			473 2)	194	147	50			
112	436	218	158	38			526	218	158	38			
132	497	258	187	51	194	125	576	258	187	51	194	125	
160	598 3)	310	220	69			703 ³⁾	313	220	69			
100	642 4)	310	220	09	253	152	747 4)	313	220	09	253	152	
180	671	348	239	75	233	132	784	351	239	75	233	132	
200	728	351	239	77			841	331	239	77			
225	961	447	348	68	354	204	1074	447	348	68	354	204	

1) 100-12 2) 100-32 3) 160-22 4) 160-32

Abmessungen, eigenbelüftet (4-polig)

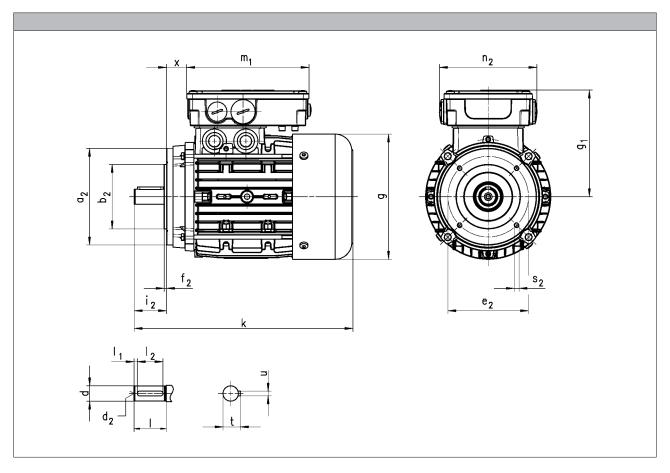
Bauform B5

Motortyp		
	MHEMARS	MHEMABS
	MHEMAIG	MHEMABI
	MHEMAAG	MHEMABA

	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	369	156	132	25			383	156	142	24		
090	418	178	137	29			436	176	147	28		
100	463 1)	196	147	36	152	121	483 1)	194	158	35	194	125
100	478 2)	190	147	30			494 2)	154	138	33	134	123
112	516	220	158	38			556	218	168	37		
132	599	261	187	51	194	125	621	258	187	51		
160	681 3)	313	220	69			789 ³⁾	313	220	69		
100	725 4)	313	220	09	253	152	833 4)	313	220	09	253	152
180	750	351	239	75	233	132	864	351	239	75	233	132
200	807	231	239	77			920	231	239	77		
225	1040	447	348	68	354	204	1153	447	348	68	354	204

^{1) 100-12} 2) 100-32 3) 160-22 4) 160-32

	d	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6	m6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	19			M6	40	4.0	32	21.5	6.0
090	24			M8	50		40	27.0	
100	28			M10	60		50	31.0	8.0
112	20			MIO	00		30	31.0	
132		38		M12	80	5.0	70	41.0	10.0
160		42		M16		3.0		45.0	12.0
180		48		MIO	110		100	51.5	14.0
200			55	M20				59.0	16.0
225			60	14120	140		130	64.0	18.0


	Flanschgröße								
		a ₂	b ₂	b ₂	c ₂	e ₂	f ₂	s ₂	i ₂
			j6	h6					-0.6 0.5
		[mm]							
080		200	130		11	165	3.5		40.0
090		200	150		11	103	5.5		50.0
100		250	180		15	215			60.0
112		230	180		13	213	4.0		60.0
132		300	230		20	265			80.0
160		350	250		13	300			
180		550	250		15	300	5.0		110
200		400		300	17	350	3.0		
225		450		350	18	400			140

5.8 - 25 Lenze | V05-de_DE-08/2018

Abmessungen, eigenbelüftet (4-polig)

Bauform B14

Motortyp													
			MHE	MAXX			MHEMABR						
	k	g	g ₁	x	m ₁	n ₂	k	g	g ₁	x	m ₁	n ₂	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
080	272	156	132	25			345	154	132	25			
090	337	176	137	29			399	176	137	29			
100	382 1)	194	147	36	152	121	458 1)	194	147	36	152	121	
100	397 2)	194	147	30			473 2)	194	147	30			
112	436	218	158	38			526	218	158	38			

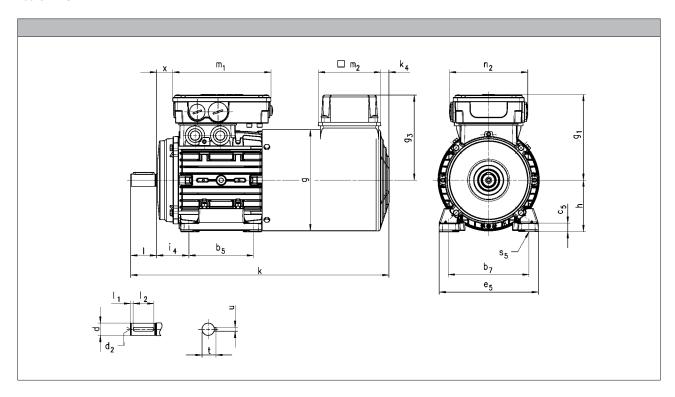
1) 100-12 2) 100-32

Abmessungen, eigenbelüftet (4-polig)

Bauform B14

Motortyp												
			MHE	MARS					MHE	MABS		
			MHE	MAIG					MHE	MABI		
			MHE	MAAG					MHE	MABA		
	k	g	g ₁	Х	m ₁	n ₂	k	g	g ₁	Х	m ₁	n ₂

	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	Х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	369	156	132	25			383	156	142	24		
090	418	178	137	29			436	176	147	28		
100	463 1)	196	147	36	152	121	483 1)	194	158	35	194	125
100	478 2)	190	147	50			494 2)	154	136	55		
112	516	220	158	38			556	218	168	37		


^{1) 100-12} 2) 100-32

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112	20		MITO	00		50	31.0	

	Flanschgröße						
		a ₂	b ₂	e ₂	f ₂	s ₂	i ₂
			j6				-0.6 0.5
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	FT100	120	80	100	3.0	M6x12	40.0
080	FT130	160	110	130	3.5	M8x14	40.0
090	FT115	140	95	115	3.0	M8x16	50.0
090						MOXIO	30.0
100	FT130	160	110	130	3.5	M8x14	60.0
112						M8x16	00.0

Bauform B3

Motortyp																		
				MI	HFMAX	Х							MI	HFMAB	R			
	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	400	156	132	25			133			455	156	132	25			133		
090	460	176	137	29			141			512	176	137	29			141		
100	491 1)	194	147	36	152	121	150			552 ¹⁾	194	147	36	152	121	150		
100	506 ²⁾	194	147	36			150			567 ²⁾	194	147	36			150		
112	538	218	158	38			162			619	218	158	38			162		
132	612	257	187	51	194	125	182	0	105	698	257	187	51	194	125	182	0	105
160	747 3)	309	220	69						777 3)	309	220	69					
160	7914)	309	220	09	253	152				8214)	309	220	09	253	152			
180	820	348	239	75	255	152	209			886	348	239	75	255	152	209		
200	884	351	259	77						944	351	259	77					
225	1173	447	348	68	354	204				1173	447	348	68	354	204			

^{1) 100-12} 2) 100-32 3) 160-22 4) 160-32

Bauform B3

Motortyp		
	MHFMARS	MHFMABS
	MHFMAIG	MHFMABI
	MHFMAAG	MHFMABA

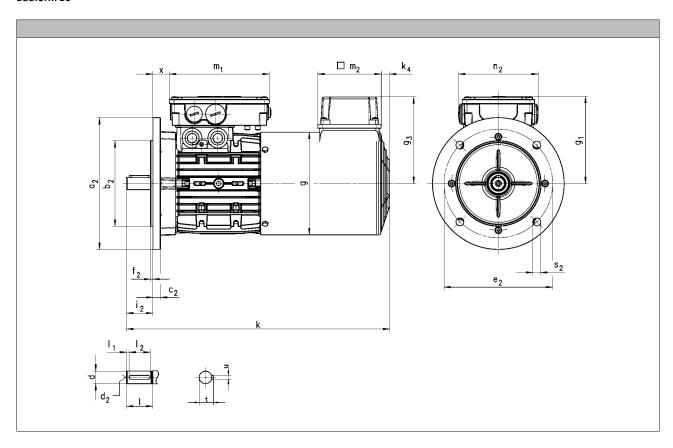
	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	400	156	132	25			133			455	156	142	24			133		
090	460	176	137	29			141			512	176	147	28			141		
100	4911)	194	147	36	152	121	150			552 ¹⁾	194	158	35	194	125	150		
100	506 ²⁾	154	147	30			130			567 ²⁾	194	136	, ,,	134	123	150		
112	619	218	158	38			162			619	218	168	37			162		
132	698	257	187	51	194	125	182	0	105	698	257	187	51			182	0	105
160	822 3)	309	220	69						835 3)	309	220	69					
160	8664)	509	220	69	253	152				879 4)	509	220	69	253	152			
180	886	348	239	75	233	132	209			946	348	220	75	233	132	209		
200	944	351	239	77						1003	351	239	77					
225	1173	447	348	68	354	204				1173	447	348	68	354	204			

	d	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6	m6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	19			M6	40	4.0	32	21.5	6.0
090	24			M8	50		40	27.0	
100	28			M10	60		50	31.0	8.0
112	20			MIO	00		30	31.0	
132		38		M12	80	5.0	70	41.0	10.0
160		42		M16		3.0		45.0	12.0
180		48		MITO	110		100	51.5	14.0
200			55	M20				59.0	16.0
225			60	74120	140		130	64.0	18.0

	b ₇	i ₄	b ₅	e ₅	h	c ₅	s ₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	125	50	100	154	80	13	10.0
090	140	56	125	174	90	13	10.0
100	160	63	140	194	100	15	
112	190	70	140	223	112	14	12.0
132	216	89	178	260	132	16	
160	254	108	210 3)	305	160	22	
100	234	108	254 4)	303	100	22	14.5
180	279	121	241 5)	350	180	23	14.5
180	279	121	279 6)	330	100	23	
200	318	133	305	400	200	32	
225	356	149	286 7)	440	225	34	18.5
223	550	149	311 8)	770	223	J4	

^{1) 100-12} 2) 100-32 3) 160-22

5.8 - 29 Lenze | V05-de_DE-08/2018


⁴⁾ 160-32

^{5) 180-12} 6) 180-32 7) 225-12

^{8) 225-22}

Bauform B5

Motortyp																		
				MI	HFMAX	X							M	HFMAB	R			
	k	g	g 1	х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	400	156	132	25			133			455	156	132	25			133		
090	460	176	137	29			141			512	176	137	29			141		
100	4911)	194	147	36	152	121	150			552 ¹⁾	194	147	36	152	121	150		
100	506 ²⁾	194	147	30			130			567 2)	194	147	30			130		
112	538	218	158	38			162			619	218	158	38			162		
132	612	257	187	51	194	125	182	0	105	698	257	187	51	194	125	182	0	105
160	747 3)	309	220	69						777 3)	309	220	69					
100	7914)	309	220	09	253	152				8214)	309	220	09	253	152			
180	820	348	239	75	233	132	209			886	348	239	75	233	132	209		
200	884	351	239	77						944	351	239	77					
225	1173	447	348	68	354	204				1173	447	348	68	354	204			

^{1) 100-12} 2) 100-32 3) 160-22 4) 160-32

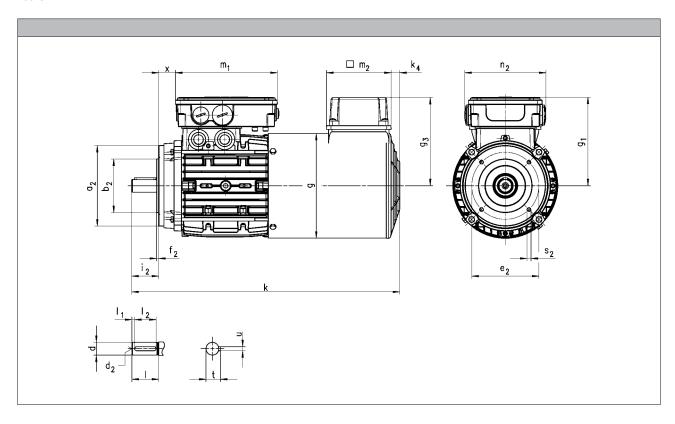
Bauform B5

Motortyp		
	MHFMARS	MHFMABS
	MHFMAIG	MHFMABI
	MHFMAAG	MHFMABA

	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	400	156	132	25			133			455	156	142	24			133		
090	460	176	137	29			141			512	176	147	28			141		
100	4911)	194	147	36	152	121	150			552 1)	194	158	35	194	125	150		
100	506 ²⁾	194	147	30			130			567 ²⁾	134	136	رر	134	123	130		
112	619	218	158	38			162			619	218	168	37			162		
132	698	257	187	51	194	125	182	0	105	698	257	187	51			182	0	105
160	822 3)	309	220	69						835 3)	309	220	69					
100	8664)	309	220	09	252	152				879 4)	309	220	09	253	152			
180	886	348	239	75	253	132	209			946	348	239	75	233	132	209		
200	944	351	239	77						1003	351	239	77					
225	1173	447	348	68	354	204				1173	447	348	68	354	204			

³⁾ 160-22 ⁴⁾ 160-32

¹⁾ 100-12 ²⁾ 100-32


	d	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6	m6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	19			M6	40	4.0	32	21.5	6.0
090	24			M8	50		40	27.0	
100	28			M10	60		50	31.0	8.0
112	20			MIO	60		30	31.0	
132		38		M12	80	5.0	70	41.0	10.0
160		42		M16		3.0		45.0	12.0
180		48		MIO	110		100	51.5	14.0
200			55	M20				59.0	16.0
225			60	74120	140		130	64.0	18.0

	Flanschgröße								
		a ₂	b ₂	b ₂	c ₂	e ₂	f ₂	s ₂	i ₂
			j6	h6					-0.6 0.5
		[mm]							
080		200	130		11	165	3.5		40.0
090		200	130		11	103	5.5		50.0
100		250	180		15	215			60.0
112		230	100		13	213	4.0		60.0
132		300	230		20	265			80.0
160		350	250		13	300			
180		550	230		13	300	5.0		110
200		400		300	17	350	3.0		
225		450		350	18	400			140

5.8 - 31 Lenze | V05-de_DE-08/2018

Bauform B14

Motortyp																		
				M	HFMAX	X							M	HFMAB	R			
	k	g	g 1	Х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	400	156	132	25			133			455	156	132	25			133		
090	460	176	137	29			141			512	176	137	29			141		
100	491 1)	194	147	36	152	121	150	0	105	552 ¹⁾	104	1.47	26	152	121	150	0	105
100	506 ²⁾	194	147	50	150 150 194 147 36 567 ²⁾	50			130									
112	538	218	158	38			162			619	218	158	38			162		

^{1) 100-12} 2) 100-32

105

194 125

150

162

35

37

Abmessungen, fremdbelüftet (4-polig)

Bauform B14

Motortyp																		
				M	HFMAR	S							MI	HFMAB	S			
				M	HFMAI	G							M	HFMAE	81			
				M	HFMAA	G							M	HFMAB	A			
	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	400	156	132	25			133			455	156	142	24			133		
090	460	176	137	29			141			512	176	147	28			141		

0

150

162

152 121

105

552 1)

567 2)

194

218

158

168

1) 100-12

100

112

491 1)

506 2)

619

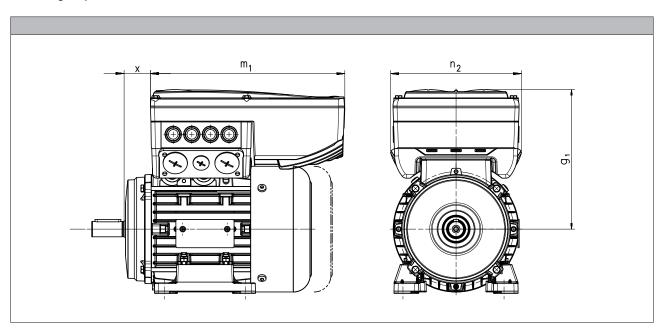
194

147

158

2)	100-32

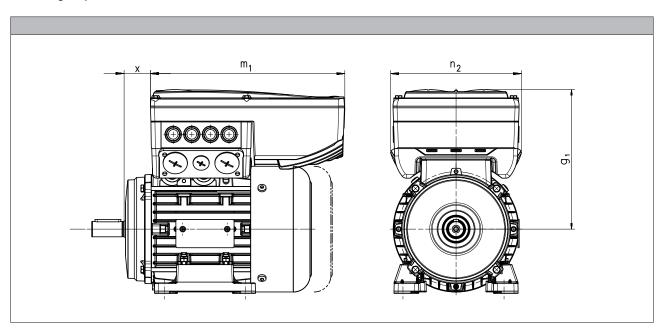
	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112	28		14/10	00		30	31.0	


	Flanschgröße						
		a ₂	b ₂	e ₂	f ₂	s ₂	i ₂
			j6				-0.6 0.5
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
080	FT100	120	80	100	3.0	M6x12	40.0
080	FT130	160	110	130	3.5	M8x14	40.0
090	FT115	140	95	115	3.0	M8x16	50.0
090						MOXIO	30.0
100	FT130	160	110	130	3.5	M8x14	60.0
112						M8x16	33.0

Abmessungen, Inverter 8400 motec

Bemessungsfrequenz 50/60 Hz

Produkt	tschlüssel				
Motor	Umrichter				
		g _{1, 50Hz}	m _{1, 50Hz}	n _{2,50Hz}	x _{50Hz}
		[mm]	[mm]	[mm]	[mm]
MH□□□□□080-32	E84DVB□7514S□□□2□	172			32.5
MH□□□□□090-12	E84DVB□1124S□□□2□	177	241	161	36.2
MH□□□□□090-32	E84DVB□1524S□□□2□	1//			30.2
MH□□□□□100-12	E84DVB□2224S□□□2□	217	260	176	42.4
MH□□□□□100-32	E84DVB□3024S□□□2□	217			42.4
MH□□□□□112-22	E84DVB□4024S□□□2□	282			32.0
MH□□□□□132-12	E84DVB□5524S□□□2□	301	325	195	47.5
MH□□□□□132-22	E84DVB□7524S□□□2□	301			47.5


- 0

Abmessungen, Inverter 8400 motec

Bemessungsfrequenz 87 Hz

Produk	tschlüssel				
Motor	Umrichter				
		g _{1,87Hz}	m _{1,87Hz}	n _{2,87Hz}	x _{87Hz}
		[mm]	[mm]	[mm]	[mm]
MH□□□□□080-32	E84DVB□1524S□□□2□	172	241	161	32.5
MH□□□□□090-12	E84DVB = 2224S = = = 2 = =	206	260	176	35.2
MH□□□□□090-32	E84DVB\[\]3024S\[\]\[\]	206	260	176	55.2
MH□□□□□100-12	E84DVB 4024S 0 2	272			29.9
MH□□□□□100-32	E84DVB = 5524S = = = 2 =	2/2	325	195	29.9
MH□□□□□112-22	E84DVB = 7524S = = = 2 = =	282			32.0

Lenze | V05-de_DE-08/2018 5.8 - 35

5.8

IE2-Drehstrommotoren MH

Technische Daten

5.8

5.8 - 36 Lenze | V05-de_DE-08/2018

Federkraftbremse

Die Drehstrommotoren können mit einer Federkraftbremse ausgestattet werden. Diese wird nach dem Abschalten der Versorgungsspannung aktiv (Ruhestromprinzip). Zur optimalen Anpassung des Bremsmomtors an die Applikation stehen in jeder Motorbaugröße mehrere Bremsmomente und Ansteuervarianten zur Verfügung. Für Anwendungen mit sehr hohen Schalthäufigkeiten ist zudem eine LongLife-Ausführung der Bremse erhältlich, die eine verstärkte Bremsenmechanik aufweist.

Eigenschaften

Ausführungen

- Standard
 - 1 x 106 Schaltzyklen repetierend
 - 1 x 106 Schaltzyklen reversierend
- LongLife
 - 10 x 10⁶ Schaltzyklen repetierend
 - 15 x 106 Schaltzyklen reversierend

Ansteuerung

- DC-Versorgung
- AC-Versorgung über Gleichrichter im Klemmenkasten

Schutzart

- ohne Handlüftung IP55
- mit Handlüftung IP54

Reibbelag

Asbestfrei, verschleißarm

Optionen

- Handlüftung
- Approbation UL/CSA
- geräuscharm

Zuordnung 4-polige Motoren - Bremse

Bauform		
	Standard	LongLife
	Standard	LongLife

Motorgröße	Baugröße	Kennmoment	Baugröße	Kennmoment
	Bremse		Bremse	
		M_k		M _k
		[Nm]		[Nm]
	08	3.50	08	8.00
080-32	08	8.00	10	7.00
	10	7.00	10	7.00
	08	3.50		
090-12	08	8.00	08	8.00
	10	7.00	10	7.00
090-32	10	16.0	10	16.0
	10	23.0		
	10	7.00		
100-12	10	16.0		
100-12	12	14.0		
	12	32.0	10	16.0
	10	7.00	12	14.0
	10	16.0	12	32.0
100-32	12	14.0		
	12	32.0		
	12	46.0		

Lenze | V05-de_DE-08/2018 5.8 - 37

Federkraftbremse

Zuordnung 4-polige Motoren - Bremse

Bauform		
	Standard	LongLife

		Standard		LongLife		
Motorgröße	Baugröße	Kennmoment	Baugröße	Kennmoment		
	Bremse		Bremse			
		M_k		M_k		
		[Nm]		[Nm]		
	12	14.0		. ,		
	12	32.0				
112-22	14	35.0				
	14	60.0				
	14	35.0				
132-12	14	60.0				
152-12	16	60.0				
	16	80.0				
	14	35.0				
	14	60.0				
132-22	16	60.0				
	16 16	80.0				
	16	100				
	16	80.0				
160-22	18	80.0				
	18	150				
	18	80.0				
160-32	18	150				
	18	200				
	18	80.0				
180-12	18	150				
100-12	20	145				
	20	260				
	18	80.0				
	18	150				
180-32	20	145				
	20 20	260 315				
	18	80.0				
	18	150				
	20	145				
200-32	20	260				
	20	315				
	20	400				
	25	265				
225-12	25	400				
	25	490				
	25	265				
225-22	25	400				
	25	490				

IE2-Drehstrommotoren MH

Zubehör

Federkraftbremse

Direkter Anschluss ohne Gleichrichter

Wird die Bremse direkt ohne Gleichrichter angesteuert, ist zum Schutz vor Induktionsspitzen eine Freilaufdiode oder ein Funkenlöschglied erforderlich.

Anschlussspannungen

DC 24 V

DC 180 V

DC 205 V

Anschluss über Netzspannung mit Bremsengleichrichter

Wird die Bremse nicht direkt mit einer Gleichspannung versorgt, ist ein Gleichrichter erforderlich. Dieser ist im Lieferumfang enthalten und befindet sich im Klemmenkasten des Motors. Der Gleichrichter wandelt die Wechselspannung des Anschlusses in eine Gleichspannung um. Folgende Gleichrichter sind verfügbar:

Einweggleichrichter, 6-polig

- Verhältnis Anschlussspannung / Bremsspulenspannung = 2.22
- Approbation UL / CSA
- Anschlussspannungen

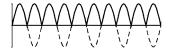
AC 230 V

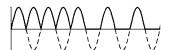
AC 400 V

AC 460 V

Brückengleichrichter, 6-polig

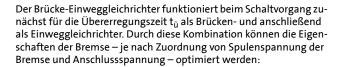
- Verhältnis Anschlussspannung / Bremsspulenspannung = 1.11
- Anschlussspannung AC 230 V


Brücke-Einweggleichrichter, 6-polig


- Verhältnis Anschlussspannung / Bremsspulenspannung bis zur Übererregungszeit = 1.11 ab der Übererregungszeit = 2.22
- Anschlussspannungen

AC 230 V

AC 400 V



Federkraftbremse

Anschluss über Netzspannung mit Bremsengleichrichter

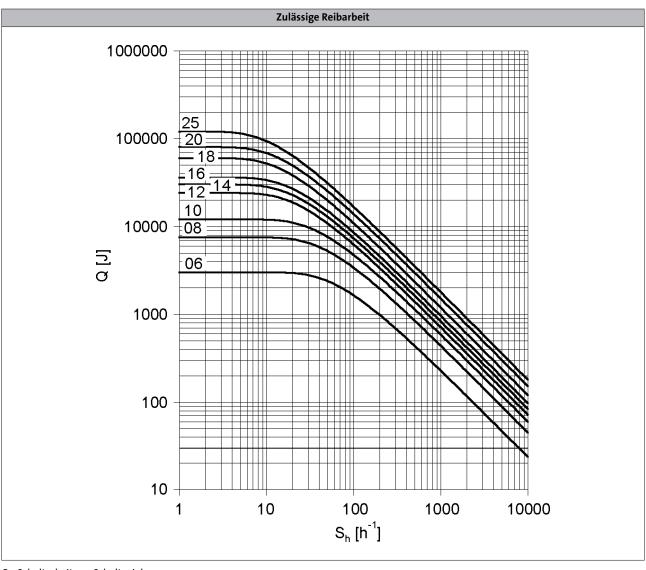
Brücke-Einweggleichrichter, 6-polig


- Verhältnis Anschlussspannung / Bremsspulenspannung bis zur Übererregungszeit = 1.11 ab der Übererregungszeit = 2.22
- Anschlussspannungen AC 230 V AC 400 V

• Kurzzeitige Übererregung der Bremsenspule

Indem die Bremsspule für die Übererregungszeit $t_{\ddot{u}}$ mit der doppelten Nennspannung angesteuert wird, lässt sich die Trennzeit reduzieren. Die Bremse öffnet schneller und der Verschleiß des Reibbelages sinkt.

Aufgrund dieser Eigenschaften eignet sich diese Ansteuerungsvariante besonders für Hebeanwendungen. Sie ist daher nur in Kombination mit einer Bremse mit erhöhtem Bremsmoment erhältlich.


• Haltestromabsenkung (Cold Brake)

Durch eine Haltestromabsenkung reduziert der Brücke-Einweggleichrichter die Leistungsaufnahme der geöffneten Bremse. Da sich die Bremse weniger erwärmt, wird diese Ansteuerung als "Cold Brake" bezeichnet.

Zubehör

Federkraftbremse

Q =Schaltarbeit pro Schaltspiel S_h =Schalthäufigkeit Bremsengröße = 06 ... 25

Lenze | V05-de_DE-08/2018 5.8 - 41

IE2-Drehstrommotoren MH

Zubehör

Federkraftbremse

Bemessungsdaten mit reduziertem Bremsmoment

- ► Beim Bremsmoment und der Höchstschaltarbeit ist die Einheit für die Werte (100 ... 3600) r/min.
- Nicht aufgeführte Bremsmomente und Höchstschaltarbeiten bitte anfragen.

Baugröße											
			06	08	10	12	14	16	18	20	25
Leistungsaufnahme						ı				ı	ı
	P _{in}	[kW]	0.020	0.025	0.030	0.040	0.050	0.055	0.085	0.10	0.11
Bremsmoment											
100	M _B	[Nm]	2.50	3.50	7.00	14.0	35.0	60.0	80.0	145	265
1000	M _B	[Nm]	2.30	3.10	6.10	12.0	30.0	50.0	65.0	115	203
1200	M _B	[Nm]	2.30	3.10	6.00	12.0	29.0	48.0	63.0	112	199
1500	M _B	[Nm]	2.20	3.00	5.80	11.0	28.0	47.0	61.0	1091)	1931)
1800	M _B	[Nm]	2.10	2.90	5.70	11.0	28.0	46.0	60.0 1)		
3000	M _B	[Nm]	2.00	2.80	5.30	10.0	26.0 1)	43.0 1)			
3600	M _B	[Nm]	2.00	2.70	5.20	10.0 1)					
Höchstschaltarbeit											
100	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1000	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1200	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1500	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	24.0 1)	36.0 1)
1800	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	36.0 1)		
3000	Q _E	[KJ]	3.00	7.50	12.0	24.0	18.0 1)	11.0 1)			
3600	Q _E	[KJ]	3.00	7.50	12.0	7.00 1)					
Übergangsschalthäufigkeit											
	S _{hü}	[1/h]	79.0	50.0	40.0	30.0	28.0	27.0	20.0	19.0	15.0
Massenträgheitsmoment						ii.	ı			ii.	ii.
	J	[kgcm²]	0.15	0.61	2.00	4.50	6.30	15.0	29.0	73.0	200
Masse											1
	m	[kg]	0.90	1.50	2.60	4.20	5.80	8.70	12.6	19.5	31.0

 $^{^{1)}\,\}text{Im}$ Bereich der Belastungsgrenze kann sich der Wert für die Reibarbeit Q_{BW} bis auf 40 % reduzieren.

E O

Federkraftbremse

Bemessungsdaten mit reduziertem Bremsmoment

► Ansteuerung über Einweg- oder Brückengleichrichter

Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[MJ]	113	210	264	706	761	966	1542	2322	3522
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	11.0	14.0	20.0	21.0	37.0	53.0	32.0	47.0	264
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	13.0	10.0	17.0	19.0	22.0	30.0	20.0	100	120
Verknüpfzeit											
	t ₁	[ms]	24	1.0	37.0	40.0	59.0	83.0	52.0	147	384
Trennzeit											
	t ₂	[ms]	35.0	37.0	57.0	65.0	148	169	230	207	269

► Ansteuerung über Brücke-Einweggleichrichter

- 411											
Ausführung											
					Ha	ltestroma	bsenkung	(Cold Bra	ke)		
Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[MJ]	113	210	264	706	761	966	1542	2322	3522
Übererregungszeit											
	tü	[ms]		30	00				1300		
Min. Ausschaltzeit											
	t	[ms]		90	00				3900		
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	12.0	22.0	35.0	49.0	61.0	114	83.0	126	304
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	14.0	16.0	30.0	45.0	37.0	65.0	52.0	269	138
Verknüpfzeit											
	t ₁	[ms]	26.0	38.0	66.0	93.0	97.0	180	134	395	443
Trennzeit											
	t ₂	[ms]	35.0	37.0	57.0	65.0	148	169	230	207	269

 Die Ansprech- und Einfallzeiten der Bremse sind Richtwerte. Die Verknüpfzeit ist bei wechselstromseitigem Schalten um den Faktor 10 größer.

Bei maximalem Luftspalt erhöht sich die Trennzeit t_2 – je nach Bremse und Ansteuerung – bis auf das 4-fache der Trennzeit bei Nennluftspalt.

Lenze | V05-de_DE-08/2018 5.8 - 43

Zubehör

Federkraftbremse

Bemessungsdaten mit Standard-Bremsmoment

- ► Beim Bremsmoment und der Höchstschaltarbeit ist die Einheit für die Werte (100 ... 3600) r/min.
- Nicht aufgeführte Bremsmomente und Höchstschaltarbeiten bitte anfragen.

Baugröße											
			06	08	10	12	14	16	18	20	25
Leistungsaufnahme											
	P _{in}	[kW]	0.020	0.025	0.030	0.040	0.050	0.055	0.085	0.10	0.11
Bremsmoment											
100	M _B	[Nm]	4.00	8.00	16.0	32.0	60.0	80.0	150	260	400
1000	M _B	[Nm]	3.70	7.20	14.0	27.0	51.0	66.0	121	206	307
1200	M _B	[Nm]	3.60	7.00	14.0	27.0	50.0	65.0	118	201	300
1500	M _B	[Nm]	3.50	6.80	13.0	26.0	48.0	63.0	115	195 ¹⁾	2911)
1800	M _B	[Nm]	3.40	6.70	13.0	26.0	47.0	61.0	112 1)		
3000	M _B	[Nm]	3.20	6.30	12.0	24.0	44.0 1)	57.0 ¹⁾			
3600	M _B	[Nm]	3.20	6.10	12.0	23.0 1)					
Höchstschaltarbeit											
100	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1000	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1200	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1500	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	24.0 1)	36.0 1)
1800	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	36.0 1)		
3000	Q _E	[KJ]	3.00	7.50	12.0	24.0	18.0 1)	11.0 1)			
3600	Q _E	[KJ]	3.00	7.50	12.0	7.00 1)					
Übergangsschalthäufigkeit											
	S _{hü}	[1/h]	79.0	50.0	40.0	30.0	28.0	27.0	20.0	19.0	15.0
Massenträgheitsmoment						1	1			1	1
	J	[kgcm²]	0.15	0.61	2.00	4.50	6.30	15.0	29.0	73.0	200
Masse				I	I	I	I	I	I	I	I
	m	[kg]	0.90	1.50	2.60	4.20	5.80	8.70	12.6	19.5	31.0

 $^{^{1)}\,\}text{Im}$ Bereich der Belastungsgrenze kann sich der Wert für die Reibarbeit Q_{BW} bis auf 40 % reduzieren.

E O

Federkraftbremse

Bemessungsdaten mit Standard-Bremsmoment

► Ansteuerung über Einweg- oder Brückengleichrichter

Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[MJ]	85.0	158	264	530	571	966	1542	2322	3522
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	15	5.0	28	3.0	17.0	27.0	33.0	65.0	110
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	13.0	16.0	19.0	25	5.0	30.0	45.0	100	120
Verknüpfzeit											
	t ₁	[ms]	28.0	31.0	47.0	53.0	42.0	57.0	78.0	165	230
Trennzeit											
	t ₂	[ms]	45.0	57.0	76.0	115	210	220	270	340	390

► Ansteuerung über Brücke-Einweggleichrichter

Ausführung											
					На	ltestroma	bsenkung	(Cold Bra	ıke)		
Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[MJ]	85.0	158	264	530	571	966	1542	2322	3522
Übererregungszeit											
	tü	[ms]		30	00				1300		
Min. Ausschaltzeit											
	t	[ms]		90	00				3900		
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	16.0	25.0	31.0	48.0	33.0	58.0	80.0	102	154
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	14.0	27.0	21.0	43.0	49.0	64.0	109	157	168
Verknüpfzeit											
	t ₁	[ms]	30.0	52	2.0	90.0	82.0	122	189	259	322
Trennzeit											
	t ₂	[ms]	45.0	57.0	76.0	115	210	220	270	340	390

 Die Ansprech- und Einfallzeiten der Bremse sind Richtwerte. Die Verknüpfzeit ist bei wechselstromseitigem Schalten um den Faktor 10 größer.
 Bei maximalem Luftspalt erhöht sich die Trennzeit t₂ – je nach Bremse und Ansteuerung – bis auf das 4-fache der Trennzeit bei

Nennluftspalt.

Lenze | V05-de_DE-08/2018 5.8 - 45

Federkraftbremse

Bemessungsdaten mit erhöhtem Bremsmoment

- ► Beim Bremsmoment und der Höchstschaltarbeit ist die Einheit für die Werte (100 ... 3600) r/min.
- Nicht aufgeführte Bremsmomente und Höchstschaltarbeiten bitte anfragen.

Baugröße												
			10	12	14	16	16	18	20	20	25	25
Leistungsaufnahme					ı	1		1	1			
	P _{in}	[kW]	0.030	0.040	0.050	0.055	0.055	0.085	0.10	0.10	0.11	0.11
Bremsmoment												
100	M _B	[Nm]	23.0	46.0	75.0	100	125	200	315	400	490	600
1000	M _B	[Nm]	20.0	39.0	64.0	83.0	103	162	249	317	376	461
1200	M _B	[Nm]	20.0	39.0	62.0	81.0	101	158	244	309	367	449
1500	M _B	[Nm]	19.0	38.0	60.0	78.0	98.0	153	237 1)	300 1)	356 1)	436 1)
1800	M _B	[Nm]	19.0	37.0	59.0	77.0	96.0	150 ¹⁾				
3000	M _B	[Nm]	17.0	34.0	55.0 ¹⁾	71.0 1)	89.01)					
3600	M _B	[Nm]	17.0	33.01)								
Höchstschaltarbeit												
100	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	80.0	80.0	120	120
1000	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	80.0	80.0	120	120
1200	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	80.0	80.0	120	120
1500	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	24.0 1)	24.0 1)	36.0 ¹⁾	36.0 ¹⁾
1800	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	36.0 1)				
3000	Q _E	[KJ]	12.0	24.0	18.0 1)	11.0 1)	11.0 1)					
3600	Q _E	[KJ]	12.0	7.001)								
Übergangsschalthäufigkeit												
	S _{hü}	[1/h]	40.0	30.0	28.0	27.0	27.0	20.0	19.0	19.0	15.0	15.0
Massenträgheitsmoment					1		1			1		1
	J	[kgcm²]	2.00	4.50	6.30	15.0	15.0	29.0	73.0	73.0	200	200
Masse				_								
	m	[kg]	2.60	4.20	5.80	8.70	8.70	12.6	19.5	19.5	31.0	31.0

 $^{^{1)}\,\}text{Im}$ Bereich der Belastungsgrenze kann sich der Wert für die Reibarbeit Q_{BW} bis auf 40 % reduzieren.

► Ansteuerung über Einweg- oder Brückengleichrichter

Baugröße												
			10	12	14	1	.6	18	2	0	2	5
Reibarbeit												
	Q _{BW}	[MJ]	198	353	253	563	241	578	1596	580	2465	1409
Ansprechverzug												
Verknüpfen	t ₁₁	[ms]	10.0	16.0	11.0	22.0	17.0	24.0	46.0	17.0	77.0	38.0
Anstiegszeit												
Bremsmoment	t ₁₂	[ms]	19.0	25	5.0	30	0.0	45.0	10	00	12	20
Verknüpfzeit												
	t ₁	[ms]	29.0	41.0	36.0	52.0	47.0	69.0	146	117	197	158
Trennzeit												
	t ₂	[ms]	109	193	308	297	435	356	378	470	451	532

г о

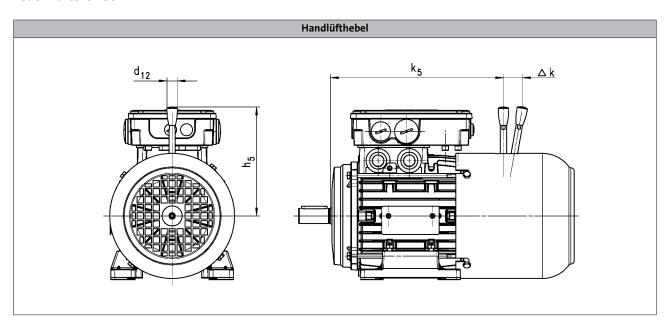
Federkraftbremse

Bemessungsdaten mit erhöhtem Bremsmoment

► Ansteuerung über Brücke-Einweggleichrichter

Ausführung												
						Haltestro	omabser	kung (Co	ld Brake))		
Baugröße												
			10	12	14	1	.6	18	2	.0	2	5
Reibarbeit												
	Q_{BW}	[MJ]	198	353	253	563	241	578	1596	580	2465	1409
Übererregungszeit											•	
	tü	[ms]	30	00				13	00			
Min. Ausschaltzeit												
	t	[ms]	90	00				39	00			
Ansprechverzug					I							
Verknüpfen	t ₁₁	[ms]	24.0	27.0	17.0	41.0	21.0	60.0	69.0	17.0	123	85.0
Anstiegszeit					I	1	I	1	1		1	I
Bremsmoment	t ₁₂	[ms]	44.0	43.0	37.0	55.0	37.0	113	148	100	190	270
Verknüpfzeit												
	t ₁	[ms]	68.0	70.0	54.0	97.0	57.0	173	217	334	313	355
Trennzeit												
	t ₂	[ms]	109	193	308	297	435	356	378	470	451	532
Ausführung												
Austumung							Überes	rogung				
Baugröße							Oberei	regung				
Daugioise			10	12	12 14 16 18 20 25					_		
Reibarbeit			10	12	14	1	.0	18		.0		.5
Reivarveit		[AA]	264	706	761	0		1542			25	22
Übererrerrit	Q _{BW}	[W1]	264	706 761 966 1542 2322 35				22				
Übererregungszeit		r 1		300 1300								
	t _ü	[ms]	30	1300								

Baugroise												
			10	12	14	1	6	18	2	20	2	:5
Reibarbeit												
	Q _{BW}	[MJ]	264	706	761	96	56	1542	23	322	35	22
Übererregungszeit												
	tü	[ms]	30	00				13	00			
Min. Ausschaltzeit												
	t	[ms]	90	00				39	00			
Ansprechverzug												
Verknüpfen	t ₁₁	[ms]	29.0	54.0	31.0	70.0	46.0	86.0	103	55.0	171	135
Anstiegszeit												
Bremsmoment	t ₁₂	[ms]	53.0	87.0	68.0	93.0	83.0	160	222	319	266	430
Verknüpfzeit												
	t ₁	[ms]	82.0	141	99.0	163	129	246	325	374	437	565
Trennzeit												
	t ₂	[ms]	53.0	81.0	117	141	168	151	160	167	184	204


Die Ansprech- und Einfallzeiten der Bremse sind Richtwerte. Die Verknüpfzeit ist bei wechselstromseitigem Schalten um den Faktor 10 größer.

Bei maximalem Luftspalt erhöht sich die Trennzeit t_2 – je nach Bremse und Ansteuerung – bis auf das 4-fache der Trennzeit bei Nennluftspalt.

Lenze | V05-de_DE-08/2018 5.8 - 47

Zubehör

Federkraftbremse

	Bremse				
		k ₅	Δk	h ₅	d ₁₂
		[mm]	[mm]	[mm]	[mm]
080	08	221	27	136	13.0
	10	232	28	132	13.0
090	08	254	27	136	13.0
090	10	265	28	132	13.0
100 1)	10	305	28	132	13.0
100 1	12	307	37	161	13.0
1003)	10	320	28	132	13.0
100 2)	12	322	37	161	13.0
112	12	320	37	161	13.0
112	14	323	41	195	24.0
122	14	386	41	195	24.0
132	16	389	55	240	24.0
160	16	505	55	240	24.0
160	18	509	59	279	24.0
180	18	540	59	279	24.0
180	20	546	74	319	24.0
200	18	597	59	279	24.0
200	20	603	74	319	24.0
225	25	757	103	445	24.0

1) 100-12 2) 100-32

Folgende Kombinationen mit Handlüfthebel und Motoranschluss in gleicher Lage sind nicht möglich:

• Steckverbinder HAN mit Anschluss in Lage 1

- Inverter motec
- Klemmenkasten der Motorengrößen 080, 090 für Bremse und Rückführung (M□□MA BR/BS/BA/BI)

Rückführungen

Für die Drehzahl- und Positionserfassung stehen je nach Applikation die nachfolgenden Resolver, Inkremental- oder Absolutwertgeber zur Verfügung.

Resolver

Der ständergespeiste Resolver mit zwei um 90° versetzten Ständerwicklungen und einer Läuferwicklung mit Transformatorwicklung kann sowohl die Drehzahl als auch die Rotorlage erfassen. Die Rotorlage bleibt bei einem Spannungsausfall erhalten.

Die Drehstrommotoren mit Resolver k\u00f6nnen nicht f\u00fcr drehzahlabh\u00e4ngige Sicherheitsfunktionen in Verbindung mit dem Sicherheitsmodul SM 301 eingesetzt werden.

Produktschlüssel				
				RS1
Genauigkeit				
			[']	-10 10
Absolute Positionierung				
				1 Umdrehung
Max. Eingangsspannung				
DC	U _{in,max}		[V]	10.0
Max. Eingangsfrequenz				
	f _{in,max}		[kHz]	4.00
Übersetzungsverhältnis				
Ständer / Läufer		± 5 %		0.30
Läuferimpedanz				
	Z _{ro}		[Ω]	51 + j90
Ständerimpedanz				
	Z _{so}		[Ω]	102 + j150
Impedanz				
	Z _{rs}		[Ω]	44 + j76
Min. Isolationswiderstand				
bei DC 500 V	R		[MΩ]	10.0
Polpaarzahl				
				1

Lenze | V05-de_DE-08/2018 5.8 - 49

Rückführungen

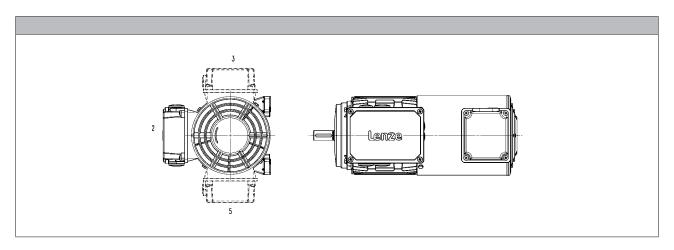
Inkremental- und SinCos-Absolutwertgeber

Inkrementalgeber können nur zur Drehzahlerfassung, nicht aber zur Drehzahlregelung eingesetzt werden. Es ist eine Referenzfahrt nötig, um später eine Positionierung zu ermöglichen.

Absolutwertgeber können die Drehzahl, die Rotorlage und die Maschinenposition mit einer sehr hohen Auflösung erfassen. Sie werden zur Positionierung von dynamischen Applikationen verwendet, eine Referenzfahrt ist nicht nötig.

Die Drehstrommotoren mit Inkrementalgebern oder SinCos-Absolutwertgebern können nicht für drehzahlabhängige Sicherheitsfunktionen in Verbindung mit dem Sicherheitsmodul SM 301 eingesetzt werden.

Geberart				HTL-Inkre	emental		TTL-Inkremental			SinCos- Absolut- wert
Produktschlüssel										
			IG128-24V- H	IG512- 24V-H	IG1024- 24V-H	IG2048- 24V-H	IG512- 5V-T	IG1024- 5V-T	IG2048- 5V-T	AM1024- 8V-H
Gebertyp									l	
										Multi- turn
Impulse										
			128	512	1024	2048	512	1024	2048	1024
Ausgangssignale					•	•				
				НТ	L			TTL		1 Vss
Schnittstellen										
			A, B-Spur		Д	, B-, N-Spu	r & invertie	rt		Hiperface
Absolute Umdrehung										
						0				4096
Genauigkeit										
		[']	-22.5 22.5			-2 .	2			-0.8 0.8
Min. Eingangsspannung										
DC	U _{in,min}	[V]		8.0	0			4.75		7.00
Max. Eingangsspannung										
DC	U _{in,max}	[V]	26.0		30.0			5.25		12.0
Max. Stromaufnahme										
	I _{max}	[A]	0.040			0.:	15			0.080
Grenzfrequenz										
	f _{max}	[kHz]	30.0		160			300		200



Fremdlüfter

Im Betrieb mit Bemessungsdrehmoment bei niedrigen Drehzahlen (< 20 Hz) rotiert der Eigenlüfter nicht mehr schnell genug um eine ausreichende Kühlung des Motors zu gewährleisten. Um ein Überhitzen zu verhindern, ist ohne Fremdlüfter eine Drehmomentreduzierung des Motors notwendig.

Der Fremdlüfter kühlt den Motor gleichmäßig und unabhängig von der Motordrehzahl. Eine Drehmomentreduzierung ist nicht erforderlich und der Motor kann von 5 Hz bis zur Bemessungsfrequenz mit seinem Bemessungsdrehmoment betrieben werden.

► Der Fremdlüfterklemmenkasten ist in den Lagen 2, 3 oder 5 erhältlich.

Bemessungsdaten 50 Hz

Baugröße	Phasenzahl	Schaltungsart					
Motor							
			U _{N, AC}	P _N	I _N	m	
			[V]	[kW]	[A]	[kg]	
	1		220	0.036	0.16		
080	2	Δ	230	0.020	0.088	2.30	
	3	Υ	400	0.020	0.051		
	1		230	0.038	0.19		
090	3	Δ	230	0.036	0.19	2.70	
		Υ	400	0.036	0.11		
	1		230	0.044	0.20	3.00	
100	3	Δ	230	0.043	0.19		
		Υ	400	0.045	0.11		
	1		230	0.050	0.23		
112	3	Δ	230	0.054	0.20	3.10	
	, ,	Υ	400	0.034	0.11		
	1		230	0.095	0.42		
132	3	Δ	230	0.091	0.33	4.20	
	5	Υ	400	0.091	0.19		
	1		230	0.22	0.97		
160	3	Δ	230	0.21	0.68	6.20	
)	Υ	400	0.21	0.39	1	

Lenze | V05-de_DE-08/2018 5.8 - 51

IE2-Drehstrommotoren MH

Zubehör

Fremdlüfter

Bemessungsdaten 50 Hz

Baugröße	Phasenzahl	Schaltungsart				
Motor						
			U _{N, AC}	P _N	I _N	m
			[V]	[kW]	[A]	[kg]
	1		230	0.22	0.97	
180	3	Δ Ι	0.21	0.68		
		Υ	400	0.21	0.39	8.00
	1		230	0.22	0.97	8.00
200	3	Δ	250	0.21	0.68	
	3	Υ	400	0.21	0.39	
	1		230	0.22	0.97	
225	3	Δ	250	0.21	0.68	15.0
		Υ	400	0.21	0.39	-

Bemessungsdaten 60 Hz

Baugröße	Phasenzahl	Schaltungsart				
Motor						
			U _{N, AC}	P _N	I _N	m
			[V]	[kW]	[A]	[kg]
080				0.028	0.053	2.30
090				0.047	0.11	2.70
100				0.059	9	3.00
112			460	0.074	0.12	3.10
132	3	3 Y		0.13	0.21	4.20
160						6.20
180				0.33	0.47	8.00
200				0.55	0.47	8.00
225						15.0

F 0

IE2-Drehstrommotoren MH

Zubehör

Temperaturüberwachung

Zum Schutz des Motors gegen Überhitzung stehen die nachfolgenden Temperatursensoren zur Verfügung. Die Temperatursensoren sind in den Wicklungen integriert. Der Einsatz eines zusätzlichen Motorschutzschalters wird empfohlen.

Thermokontakte TKO

Der Thermokontakt TKO (Thermokontaktöffner) ist ein Bimetallschalter. Der TKO überwacht die Motorwicklungstemperatur, bei zu hohen Temperaturen schaltet das Motorrelais. Der Motor ist vom Netz getrennt

Funktion	Auslösetemperatur	Min. Rückschalttempe- ratur	Max. Rückschalttem- peratur	Max. Eingangsstrom	Max. Eingangsspan- nung
					AC
	Т	T _{min}	T _{max}	I _{in,max}	U _{in,max}
	-5 5				
	[°C]	[°C]	[°C]	[A]	[V]
Öffner	150	90.0	135	2.50	250

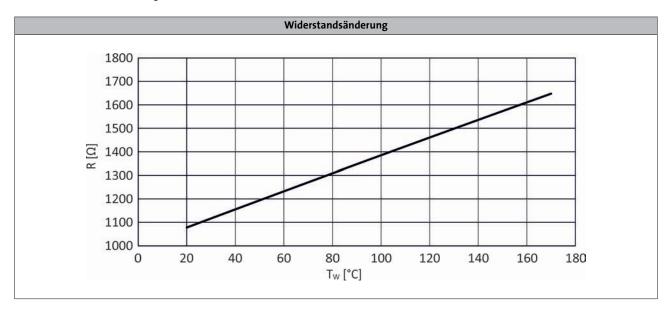
Kaltleiter PTC

Der PTC-Widerstand wird in Verbindung mit einem Auslösegerät betrieben. Wird der Motor zu heiß, kann der Motor mithilfe eines Schützes ausgeschaltet werden. Im Gegensatz zum Thermokontakt ist ein schnelles Wiedereinschalten möglich.

Funktion	Auslösetemperatur		Bemessungswiderstand		
		155 °C	-20 °C	140 °C	
	Т	R _N	R _N	R _N	
	-5 5				
	[°C]	[Ω]	[Ω]	[Ω]	
Sprunghafte Wider- standsänderung	150	550	30.0	250	DIN 44080 VDE 0660 Teil 303

Lenze | V05-de_DE-08/2018 5.8 - 53

Zubehör



Temperaturüberwachung

Temperaturfühler PT1000

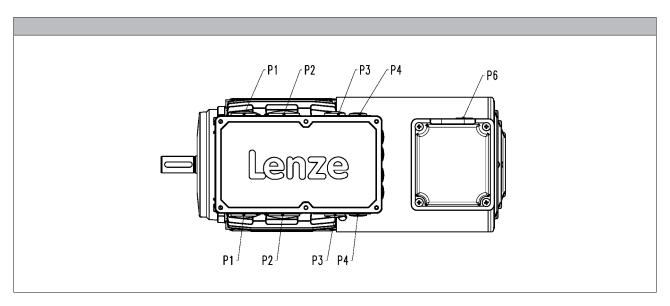
Die Temperaturfühler funktionieren als kontinuierlich veränderlicher Widerstand tendenziell ähnlich wie Kaltleiter. Der Widerstand steigt bei zunehmender Temperatur jedoch nur vergleichsweise langsam an. Dadurch kann ein Regler regelmäßig die Temperatur ermitteln und bereits frühzeitig eine Prozessbewertung vornehmen. So kann der Motor bereits vor dem Überhitzen abgeschaltet werden.

 Bei Speisung der Temperatursensoren mit einem Messstrom von 1 mA gilt der Zusammenhang zwischen Temperatur und gemessenem Widerstand im Diagramm.

5.8

5.8 - 54 Lenze | V05-de_DE-08/2018

Klemmenkasten


Die Drehstrommotoren sind für den Betrieb am konstanten Netz und am Inverter bestimmt.

Für den 50 Hz Betrieb sind die Motoren in $\Delta\text{-}Schaltung$ an 230 V oder in Y-Schaltung an 400 V zu betreiben.

Für den Inverterbetrieb ist die Eckfrequenz auf 87 Hz bei einer Bemessungsspannung von 400 V in Δ -Schaltung festgelegt worden.

Der Standard-Anschluss findet über einen Klemmkasten statt. Darüber hinaus stehen für die schnelle Inbetriebnahme bzw. Wartung ICNund HAN-Steckverbinder zur Verfügung.

Anschlüsse

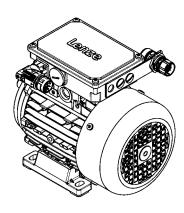
Motortyp		
Anbauten	M□□MAXX M□□MABR M□□MARS M□□MAIG M□□MAAG	M□□MABS M□□MABI M□□MABA

	P ₁	P ₂	P ₃	P ₄	P ₆	P ₁	P ₂	P ₃	P ₄	P ₆				
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
080														
090	M20x1.5	M25x1.5			M25x1.5	M25x1.5 M32x1.5		M20x1.5	M16x1.5					
100	MIZUXI.5	10123X1.3					M25x1.5 M32x1.5							
112														
132	M25x1.5	M32x1.5			M16x1.5			MZUX1.5	MIOXI.3	M16x1.5				
160			A420-1 F A416-1 F	M20x1.5 M16x1.5	M20v1 F M16v1	M20v1 E	M20v1 F M16v1 I	w1 F M16 v1 F	M16v1 F					
180	M50x1.5	0x1.5 M16x1.5			MIOXI.J	MIOXI.3		M50x1.5	M16x1.5					
200														
225 1)	M12x1.5	M63x1.5	M50x1.5	M12x1.5		M12x1.5	M63x1.5	M50x1.5	M12x1.5					

 $^{^{1)}\,\}mathrm{Die}\,\mathrm{Kabelverschraubungen}\,\mathrm{P1}\,...\,\mathrm{P4}\,\mathrm{sind}\,\mathrm{nur}\,\mathrm{unten}\,\mathrm{angeordnet}.$

Lenze | V05-de_DE-08/2018 5.8 - 55

E 0


Steckverbinder

Für die Drehstrommotoren stehen die Steckverbinder in den Ausführungen ICN, HAN und M12 (nur für Inkrementalgeber IG128-24V-H) zur Verfügung.

Steckverbinder ICN

Der Anschluss der Leistung, Bremse und Temperaturüberwachung erfolgt in einem Steckverbinder.

Der Anschluss an die Rückführung und dem Fremdlüfter wird jeweils über einen separaten Steckverbinder realisiert.

Anschluss der Leistung, Bremse und Temperaturüberwachung

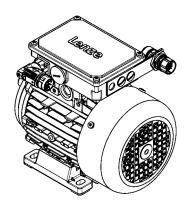
Für den Leistungsanschluss des Steckverbinders ist ein max. Motorbemessungsstrom von 16 A zulässig.

Die Steckverbinder sind um 270° drehbar und mit einem Bajonettverschluss für SpeedTec-Steckverbinder ausgestattet. Da der Verschluss des Steckverbinders zusätzlich mit herkömmlichen Überwurfmuttern kompatibel ist, können vorhandene Gegenstecker mit Schraubverschluss problemlos weiterverwendet werden. Die Festlegung der Motorschaltung erfolgt im Klemmenkasten.

► ICN M23 6-polig

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	BD1/BA1	Bremse +/AC	
2	BD2 / BA2	Bremse -/AC	1 20 6
PE	PE	Schutzleiter	() () () () () () () () () ()
4	U	Leistung Strang U	50
5	V	Leistung Strang V	40 7
6	W	Leistung Strang W	

► ICN M23 8-polig


Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	U	Leistung Strang U	
PE	PE	Schutzleiter	
3	W	Leistung Strang W	D 3
4	V	Leistung Strang V	(CO O 4
Α	TB1 / TP1 R1	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	(OO) ©
В	TB2 / TP2 R2	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	B C 1
С	BD1/BA1	Bremse +/AC	
D	BD2 / BA2	Bremse -/AC	

Steckverbinder ICN

Anschluss der Rückführung

Optional sind alle Gebersysteme (Ausnahme: IG128-24V-H) auch mit einem am Motorklemmenkasten befestigten ICN-Steckverbinder erhältlich, so dass eine besonders schnelle Inbetriebnahme möglich ist. Die Steckverbinder sind mit einem Bajonettverschluss ausgestattet, der zusätzlich mit herkömmlichen Überwurfmuttern kompatibel ist. Vorhandene Gegenstecker können so problemlos weiterverwendet werden.

Resolver

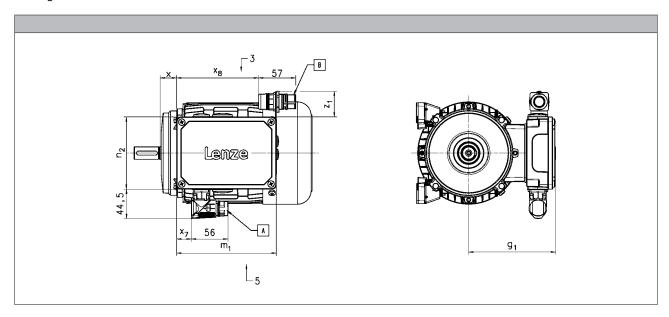
Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	+Ref	Turnefermentemoialdonere	
2	-Ref	Transformatorwicklungen	
3	+VCC ETS	Versorgung: Elektronisches Typenschild	
4	+COS	Ständerwicklungen Cosinus	Code 0°
5	-COS	Ständerwicklungen Cosinus	198
6	+SIN	Ständerwicklungen Sinus	
7	-SIN	Standerwicklungen Sinus	10 12 6
8			4 11 5
9		Nicht belegt	
10			
11	+PT1000/+KTY	Temperaturfühler PT1000/KTY	
12	-PT1000/-KTY	remperaturumer F11000/KTY	

► Inkremental- und SinCos-Absolutwertgeber Hiperface

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	В	Spur B/+SIN	
2	A-	Spur A invers/-COS	
3	Α	Spur A/+COS	
4	+U _B	Versorgung +	Code 20°
5	GND	Masse	0.8
6	Z ⁻	Nullspur invers/-RS485	
7	Z	Nullspur/+RS485	12 10 11 6 J
8		Nicht belegt	3 A 313
9	B ⁻	Spur B invers/-SIN	
10		Nicht belegt	
11	+PT1000/+KTY	Tomporaturfühler DT1 000 /VTV	
12	-PT1000/-KTY	Temperaturfühler PT1000/KTY	

Lenze | V05-de_DE-08/2018 5.8 - 57

Steckverbinder ICN


Abmessungen der Steckverbinder am Klemmenkasten

Folgende Lagen des Steckverbinders sind möglich:

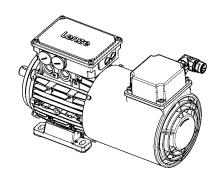
- Leistungsanschluss (A) in Lage 5 und Rückführungsanschluss (B) in Lage 3
- Leistungsanschluss (A) in Lage 3 und Rückführungsanschluss (B) in Lage 5

Bei folgenden Motoren ist nur der Rückführungsanschluss (B) in Lage 3 oder 5 erhältlich:

• Motorgröße 132 ... 180

Motortyp		
	M□□MAXX	M□□MABR
	M□□MARS	M□□MABS
	M□□MAIG	M□□MABI
	M□□MAAG	M□□MABA

	g ₁	x	m ₁	n ₂	x ₇	x ₈	z _{1, max}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	109	17	136	103	16	109	43
071	118	24	130	103	10	109	43
080	132	25					
090	137	29	152	152 121	23	125	41
100	147	36					
112	158	38					
132	187	51	194	125	27	166	71
160	220	69					
180	239	75	253	152		200	65
200	239	77					
225	348	68	354	204		328	51


г о

Steckverbinder ICN

Anschluss des Fremdlüfters

Optional ist der Fremdlüfter auch mit einem am Klemmenkasten des Fremdlüfters befestigten ICN-Steckverbinder erhältlich, so dass eine besonders schnelle Inbetriebnahme möglich ist. Die Steckverbinder sind mit einem Bajonettverschluss ausgestattet, der zusätzlich mit herkömmlichen Überwurfmuttern kompatibel ist. Vorhandene Gegenstecker können so problemlos weiterverwendet werden.

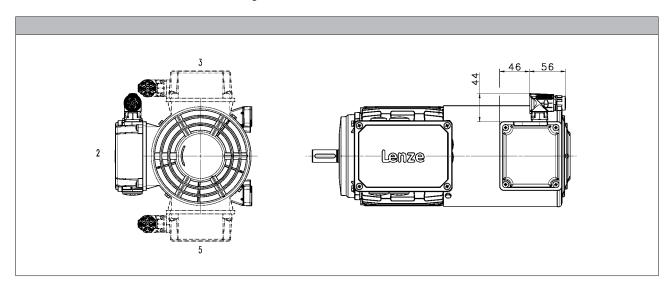
► Fremdlüfter 1-ph

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
PE	PE	Schutzleiter	. Ф
1	U1	Lüfter	6
2	U2	Luiter 5	5 0 1
3			
4			4
5		Nicht belegt	
6			á

► Fremdlüfter 3-ph

Steckerbelegung			
Kontakt	Bezeichnung	Bedeutung	
PE	PE	Schutzleiter	. •
1	U	Leistung Strang U	6
2		Nicht belegt	5 0 1
3	V	Leistung Strang V	() () () () () () () () () ()
4		Night halagt	4
5		Nicht belegt	
6	W	Leistung Strang W	á

Lenze | V05-de_DE-08/2018 5.8 - 59


Zubehör

Steckverbinder ICN

Anschluss des Fremdlüfters

- ► Der Fremdlüfterklemmenkasten ist in den Lagen 2, 3 oder 5 erhältlich
- Zusätzlich kann der Deckel des Fremdlüfterklemmenkastens (inkl. Steckverbinder) bei Bedarf schrittweise um 90° gedreht werden.

5.8

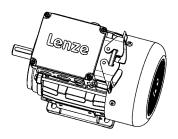
5.8 - 60 Lenze | V05-de_DE-08/2018

Steckverbinder M12

Anschluss des Inkrementalgebers IG128-24V-H

Dieser Inkrementalgeber ist im Standard mit einem etwa 0,5 m langen Kabelschwanz ausgestattet, an dessen Ende sich ein M12-Steckverbinder nach allgemeinem Industriestandard befindet.

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	+U _B	Versorgung +	
2	В	Spur B	
3	GND	Masse	30 0 2
4	А	Spur A	40 10 1


Lenze | V05-de_DE-08/2018 5.8 - 61

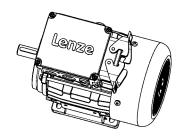
Steckverbinder HAN

HAN 10 E

Bei dem Rechtecksteckverbinder HAN 10 E werden alle sechs Enden der drei Wicklungsstränge auf die Leistungskontakte ausgeführt. Die Festlegung der Motorschaltung erfolgt somit im Gegenstecker.

Steckerbe	legung	
Kontakt	Bedeutung	
1	Klemmenbrett: U1	
2	Klemmenbrett: V1	
3	Klemmenbrett: W1	
4	Bremse +/AC	
5	Bremse -/AC	780 6 7 8 9 10 \ 0 0 0 0 0 0
6	Klemmenbrett: W2	
7	Klemmenbrett: U2	
8	Klemmenbrett: V2	
9	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
10	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	

5.8


5.8 - 62 Lenze | V05-de_DE-08/2018

Steckverbinder HAN

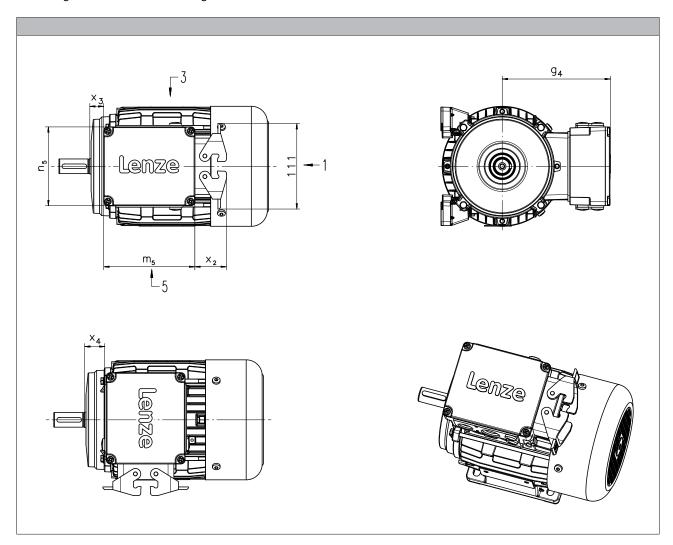
HAN modular

Der Steckverbinder ist je nach Motorbemessungsstrom mit zwei unterschiedlichen Leistungsmodulen verfügbar (16 A oder 40 A). Die Festlegung der Motorschaltung erfolgt im Klemmenkasten und muss vor der Inbetriebnahme geprüft werden.

► HAN modular 16 A

Steckerbo	elegung		
Modul	Kontakt	Bedeutung	
	1	Klemmenbrett: U1	
а	2	Klemmenbrett: V1	
	3	Klemmenbrett: W1	
b		Blindmodul	
	1	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
	2	Bremse +/AC	
	3	Bremse -/AC	
(4	Gleichrichter: Schaltkontakt	
	5	Gleichnichter: Schaltkontakt	a b c
	6	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	

► HAN modular 40 A


Steckerb	elegung		
Modul	Kontakt	Bedeutung	
	1	Klemmenbrett: U1	
a	2	Klemmenbrett: V1	
	3	Klemmenbrett: W1	
b		Blindmodul	
	1	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
	2	Bremse +/AC	
	3	Bremse -/AC	
С	4	Gleichrichter: Schaltkontakt	
	5	Gielchilen: Schaltkontakt	a b c
	6	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	

Lenze | V05-de_DE-08/2018 5.8 - 63

Steckverbinder HAN

► Der Anschluss des Steckverbinders wurde in der Lage 1 dargestellt. Die Lagen 3 und 5 sind ebenfalls möglich.

Motortyp	
	M□□MAXX
	M□□MABR

	g ₄	m ₅	n ₅	x ₂	x ₃	x ₄
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	120				11	12
071	129		102	41	16	17
080	138	118			18	26
090	143				22	30
100	157				29	37
112	164				28	36
132 1)	233	120	180	47	48	18
160	248	120		4/	72	42

 $^{^{1\!)}}$ Der Anschluss des Steckverbinders in Lage 3 oder 5 ist bei der Motorbauform B5 nicht möglich.

F 0

IE1-Drehstrommotoren MD

0.12 ... 22 kW

IE1-Drehstrommotoren MD

Inhalt

Allgemeines	Kurzzeichenlegende	5.9 - 4
	Produktschlüssel	5.9 - 5
	Produktinformationen	5.9 - 6
	Funktionen und Eigenschaften	5.9 - 7
	Zuordnung Motor – Inverter	5.9 - 11
	Dimensionierung	5.9 - 13
Technische Daten	Normen und Einsatzbedingungen	5.9 - 15
	Zulässige Radial- und Axialkräfte	5.9 - 16
	Bemessungsdaten 50 Hz	5.9 - 18
	Bemessungsdaten 60 Hz	5.9 - 20
	Bemessungsdaten 87 Hz	5.9 - 22
	Abmessungen, eigenbelüftet (4-polig)	5.9 - 24
	Abmessungen, fremdbelüftet (4-polig)	5.9 - 30
	Abmessungen, Inverter 8400 motec	5.9 - 36
Zubehör	Federkraftbremse	5.9 - 39
	Rückführungen	5.9 - 51
	Fremdlüfter	5.9 - 53
	Temperaturüberwachung	5.9 - 55
	Klemmenkasten	5.9 - 57
	Steckverbinder	5.9 - 58
	Steckverbinder ICN	5.9 - 58
	Steckverbinder M12	5.9 - 63
	Steckverhinder HAN	5 9 - 64

IE1-Drehstrommotoren MD

Allgemeines

Kurzzeichenlegende

n	[%]	Wirkungsgrad
η _{100 %}		0 0
η _{75 %}	[%]	Wirkungsgrad
η _{50 %}	[%]	Wirkungsgrad
cos φ		Leistungsfaktor
I _N	[A]	Bemessungsstrom
I _{max}	[A]	Max. Stromaufnahme
J	[kgcm²]	Massenträgheitsmoment
m	[kg]	Masse
Ma	[Nm]	Anlaufmoment
M _b	[Nm]	Kippmoment
M _{max}	[Nm]	Max. Drehmoment
M _N	[Nm]	Bemessungsdrehmoment
n _N	[r/min]	Bemessungsdrehzahl
P _N	[kW]	Bemessungsleistung
P _{max}	[kW]	Max. Leistungsaufnahme

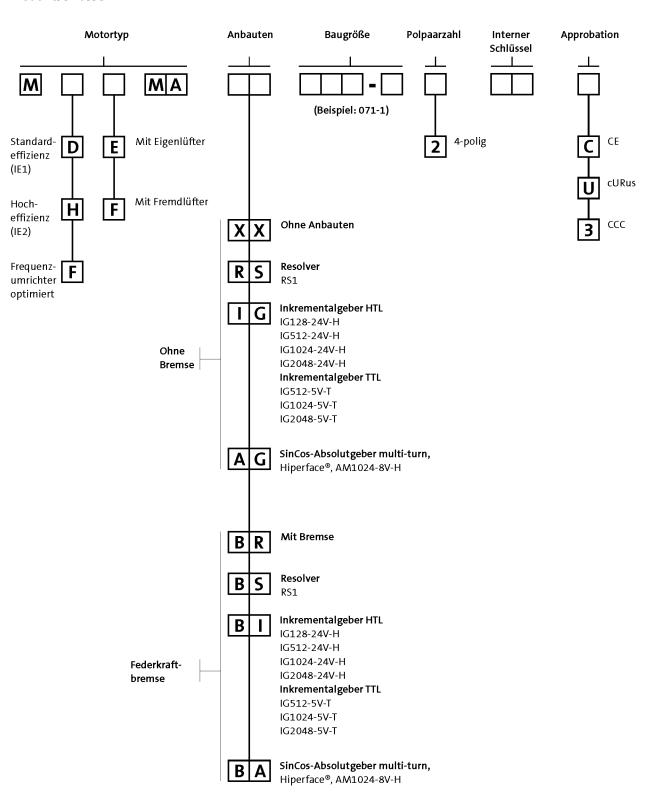
Ur	nin	[V]	Min. Netzspannung
U	Ι, Δ	[V]	Bemessungsspannung
U	I, Y	[V]	Bemessungsspannung

Max. Netzspannung

U_{max}

[V]

CE	Communauté Européenne
CSA	Canadian Standards Association
DIN	Deutsches Institut für Normung e.V.
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Norm
IEC	International Electrotechnical Commission
IM	International Mounting Code
IP	International Protection Code
NEMA	National Electrical Manufacturers Association
UL	Underwriters Laboratory Listed Product
UR	Underwriters Laboratory Recognized Product
VDE	Verband deutscher Elektrotechniker
CCC	China Compulsory Certificate
EAC	Zertifikat Zollunion Russland / Belarus / Kasachstan
cURus	Kombiniertes Prüfzeichen der UL für USA und Kanada
UkrSEPRO	Zertifikat für die Ukraine


5.9

5.9 - 4 Lenze | V06-de_DE-08/2018

9 20.3

Produktschlüssel

Lenze | V06-de_DE-08/2018 5.9 - 5

IE1-Drehstrommotoren MD

Allgemeines

Produktinformationen

Seit Langem sind Drehstrommotoren von Lenze in nahezu allen Industriebereichen etabliert. Aufbauend auf diese langjährige Erfahrung im Bereich der Antriebs- und Automatisierungstechnik wurde ein Motor entwickelt, der dafür sorgt, Ihren Ansprüchen an Produktivität, Qualität und Verfügbarkeit optimal gerecht zu werden. Die Drehstrommotoren der L-force-Reihe zeichnen sich vor allem durch den umfangreichen Baukasten aus. Eine Vielzahl von Optionen ermöglicht es Ihnen, die Antriebseigenschaften genau auf Ihre Applikation anzupassen. Wir nennen dies Rightsizing.

L-force Drehstrommotoren MD sind in einem Leistungsbereich von 0.12 ... 22 kW lieferbar und entsprechen der Effizienzklasse IE1 (Standardeffizienz) nach IEC 60034-30.

Grundausführungen

- Mit den Bauformen B3, B5 und B14 sowie den nach IEC 60072-1 bzw. DIN EN 50347 standardisierten Abmessungen sind die Motoren universell einsetzbar.
- Die standardmäßig integrierten Temperatursensoren ermöglichen eine permanente Temperaturüberwachung und sind auf die Wärmeklasse F (155°C) der Motorwicklung abgestimmt.
- In der Basisausführung sind die Motoren durch die Schutzart IP55 den Umgebungsbedingungen angepasst.
- Bei schwierigen Einsatzbedingungen steht das Oberflächen- und Korrosionsschutzsystem zur Verfügung, das den Motor zuverlässig vor aggressiven Medien schützt.

Optionen

- Verschiedene Bremsengrößen jeweils mit mehreren Bremsmomenten verfügbar – lassen sich mit den Drehstrommotoren kombinieren.
- Die LongLife-Ausführung der Bremse ermöglicht problemlos über 10 x 10⁶ Schaltzyklen.
- Zur Drehzahl- und Positionserfassung ist der Anbau eines Resolvers sowie verschiedener Inkremental- und Absolutwertgeber möglich.
- Zur schnellen Inbetriebnahme sind die Motoren auch mit Steckverbindern für Leistungsanschlüsse, Bremse, Fremdlüfter und Rückführung verfügbar.
- Statt eines Eigenlüfters kann der Motor optional mit einem Fremdlüfter ausgestattet werden. Auch bei Drehzahlen unter 20 Hz ist dann keine Drehmomentreduzierung notwendig.
- Für Antriebsaufgaben in dezentralen Anwendungen kann der Motor mit dem auf den Klemmenkasten montierten Inverter motec bezogen werden.
- Die Motoren sind mit Approbationen nach cURus, GOST-R, CCC und UkrSepro erhältlich.

Funktionen und Eigenschaften

Baugröße					
Motor		063	071	080	090
Bauform				I	<u>I</u>
		B3 B5 B14			
Wellenzapfen					
d x I	[mm]	11 x 23	14 x 30	19 x 40	24 x 50
Federkraftbremse					
Ausführung		Standard- oder LongLife-Ausführung Reduziertes- oder Standard-Bremsmoment Mit Gleichrichter Mit Handlüfthebel Geräuscharm Standard- oder LongLife-Ausführun Reduziertes, Standard oder erhöhtes Brei Mit Gleichrichter Mit Gleichrichter Mit Handlüfthebel Geräuscharm		der erhöhtes Bremsmo- ent chrichter lüfthebel	
Rückführung					
Ausführung		Resolver Inkrementalgeber Absolutwertgeber (Multi-turn)			
Temperatursensor					
Thermokontakt			TI	КО	
Temperaturfühler			PT1	.000	
Kaltleiter		PTC			
Motoranschluss					
Leistungsanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN10E Steckverbinder HAN modular			
Bremsenanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular Steckverbinder HAN10E			
Fremdlüfteranschluss		Klemmenkasten Steckverbinder ICN			
Rückführungsanschluss		Klemmenkasten Steckverbinder ICN			
Temperatursensoranschluss		Klemmenkasten TKO oder PTC bei Steckverbinder im Leistungsanschluss PT1000 bei Steckverbinder im Rückführungsanschluss			
Wellenlagerung				-	
Lage des Festlagers		Normmotoren (B3, B5, B14): B-Seite Motoren für Getriebe (Direktanbau): A-Seite			
Lagerart		Rillenkugellager mit hochtemperaturbeständigem Fett, 2 Dichtscheiben bzw. Deckscheiben			
Farbe					
		unlackiert grundiert Lackierung in verschiedenen Korrosionsschutzausführungen nach RAL-Farben			

Lenze | V06-de_DE-08/2018 5.9 - 7

Funktionen und Eigenschaften

Baugröße				
Motor		100	112	
Bauform				
		В	3	
			5	
		B:	14	
Wellenzapfen				
dxl	[mm]	283	x 60	
Federkraftbremse			I	
Ausführung		Standard- oder LongLife-Ausführung Reduziertes, Standard oder erhöhtes Bremsmo- ment Mit Gleichrichter Mit Handlüfthebel Geräuscharm	Standard-Ausführung Reduziertes, Standard oder erhöhtes Bremsmo- ment Mit Gleichrichter Mit Handlüfthebel Geräuscharm	
Rückführung				
Ausführung		Resolver Inkrementalgeber Absolutwertgeber (Multi-turn)		
Temperatursensor				
Thermokontakt		ТКО		
Temperaturfühler		PT1000		
Kaltleiter		P-	тс	
Motoranschluss				
Leistungsanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN10E Steckverbinder HAN modular		
Bremsenanschluss Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular Steckverbinder HAN10E		oinder ICN r HAN modular		
Fremdlüfteranschluss		Klemmenkasten Steckverbinder ICN		
Rückführungsanschluss		Klemmenkasten Steckverbinder ICN		
Temperatursensoranschluss TKO oder PTC bei Steckverbinder im Leistungsanschluss PT1000 bei Steckverbinder im Rückführungsanschluss		inder im Leistungsanschluss		
Wellenlagerung				
Lage des Festlagers	Normmotoren (B3, B5, B14): B-Seite Motoren für Getriebe (Direktanbau): A-Seite			
Lagerart		Rillenkugellager mit hochtemperaturbeständigem Fett, 2 Dichtscheiben bzw. Deckscheiben		
Farbe				
		grun	ckiert diert sschutzausführungen nach RAL-Farben	

5.0

5.9 - 8 Lenze | V06-de_DE-08/2018

Funktionen und Eigenschaften

Baugröße						
Motor		132	160	180		
Bauform		132	100	100		
		B3				
		B5				
Wellenzapfen				1		
d x l	[mm]	38 x 80 42 x 110 48 x 110				
Federkraftbremse						
Ausführung		Standard-Ausführung Reduziertes, Standard oder erhöhtes Bremsmoment Mit Gleichrichter Mit Handlüfthebel Geräuscharm				
Rückführung						
Ausführung		Resolver Inkrementalgeber Absolutwertgeber (Multi-turn)				
Temperatursensor						
Thermokontakt			TKO			
Temperaturfühler			PT1000			
Kaltleiter			PTC			
Motoranschluss						
Leistungsanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular	Klemmenkasten Steckverbinder HAN modular	Klemmenkasten		
Bremsenanschluss		Klemmenkasten Steckverbinder ICN Steckverbinder HAN modular	Klemmenkasten Steckverbinder HAN modular	Klemmenkasten		
Fremdlüfteranschluss		Klemmenkasten Steckverbinder ICN				
Rückführungsanschluss		Klemmenkasten Steckverbinder ICN				
Temperatursensoranschluss		Klemmenkasten TKO oder PTC bei Steckverbinder im Leistungsanschluss PT1000 bei Steckverbinder im Rückführungsanschluss		Klemmenkasten		
Wellenlagerung						
Lage des Festlagers		Normmotoren (B3, B5, B14): B-Seite Motoren für Getriebe (Direktanbau): A-Seite				
Lagerart		Rillenkugellager mit hochtemperaturbeständigem Fett, 2 Dichtscheiben bzw. Deckscheiben				
Farbe						
		unlackiert grundiert Lackierung in verschiedenen Korrosionsschutzausführungen nach RAL-Farben				

Lenze | V06-de_DE-08/2018 5.9 - 9

Funktionen und Eigenschaften

Oberflächen- und Korrosionsschutz

Um die Drehstrommotoren je nach Umgebungsbedingungen optimal zu schützen, stehen mit dem Oberflächen- und Korrosionschutzsystem (OKS) maßgeschneiderte Lösungen zur Verfügung.

Verschiedene Oberflächenbeschichtungen sorgen dafür, dass die Motoren auch bei hoher Luftfeuchtigkeit, Außenaufstellung oder athmosphärischen Verunreinigungen zuverlässig funktionieren. Der Farbton des Decklacks kann nach RAL Classic gewählt werden. Darüber hinaus sind die Drehstrommotoren auch unlackiert (ohne OKS) erhältlich.

Oberflächen- und Korrosions- schutzsystem	Anwendungen	Maßnahmen
OKS-G (Grundiert)	Abhängig vom nachträglich aufzubringenden Decklack	2K-PUR-Grundierung (grau)
OKS-S (Small)	StandardanwendungenInnenaufstellung in beheizten GebäudenLuftfeuchtigkeit bis 90%	Oberflächenbeschichtung entspr. Korrosivitätsklas- se C1 (gemäß EN 12944-2)
OKS-M (Medium)	 Innenaufstellung in unbeheizten Gebäuden Überdachte, geschützte Außenaufstellung Luftfeuchtigkeit bis 95 % 	Oberflächenbeschichtung entspr. Korrosivitätsklasse C2 (gemäß EN 12944-2)
OKS-L (Large) OKS-XL (extra Large)	 Außenaufstellung Luftfeuchtigkeit über 95 % Chemische Industrieanlagen Lebensmittelindustrie 	 Oberflächenbeschichtung entspr. Korrosivitätsklasse C3 (gemäß EN 12944-2) Lüfterhaube und B-Lagerschild zusätzlich grundiert Schrauben verzinkt Kabelverschraubungen mit Dichtringen Korrosionsstabile Bremse mit Abdeckring, nicht rostendem Reibblech und verchromter Ankerscheibe (auf Anfrage) Optionale Maßnahmen: Rezesse am Motor abgedichtet (auf Anfrage)

Aufbau der Oberflächenbeschichtung

Oberflächen- und Korrosions- schutzsystem	Korrosivitätsklasse	Oberflächenbeschichtung	Farbton
	DIN EN ISO 12944-2	Aufbau	
ohne OKS (unlackiert)			
OKS-G (Grundiert)		2K-PUR-Grundierung	
OKS-S (Small)	Vergleichbar mit C1	2K-PUR-Decklack	
OKS-M (Medium)	Vergleichbar mit C2		Standard: RAL 7012
OKS-L (Large) OKS-XL (extra Large)	Vergleichbar mit C3	2K-PUR-Grundierung 2K-PUR-Decklack	Optional: Nach RAL Classic möglich

5.9 - 10 Lenze | V06-de_DE-08/2018

Zuordnung Motor – Inverter

Bemessungsfrequenz 50/60 Hz

- Dezentraler Inverter 8400 motec (E84DVB)
 Inverter Drives 8400 (E84AV)

Bemessungsleistung	Produktschlüssel							
	Motor	Umrichter						
P _N								
[kW]								
0.12	MD□□□□063-12							
0.18	MD□□□□063-32		E84AV□□□2512□□□					
0.25	MD 063-42 MD 071-12	E84DVB□3714S□□□2□						
0.37	MD = = = = 071-32		E84AV 🗆 🗆 3714 🗆 🗆					
0.55	MD	E84DVB□5514S□□□2□	E84AV 🗆 🗆 5514 🗆 🗆					
0.75	MD□□□□080-32	E84DVB□7514S□□□2□	E84AV 🗆 🗆 7514 🗆 🗆					
1.10	MD = = = = = 080-42 MD = = = = = = 090-12	E84DVB□1124S□□□2□	E84AV					
1.50	MD□□□□090-32	E84DVB□1524S□□□2□	E84AV 🗆 🗆 1524 🗆 🗆					
2.20	MD□□□□100-12	E84DVB□2224S□□□2□	E84AV□□□2224□□□					
3.00	MD□□□□100-32	E84DVB□3024S□□□2□	E84AV□□□3024□□□					
4.00	MD = = = = 112-22	E84DVB□4024S□□□2□	E84AV					
5.50	MD = = = = 132-12	E84DVB□5524S□□□2□	E84AV 🗆 🗆 5524 🗆 🗆					
7.50	MD□□□□132-22	E84DVB□7524S□□□2□	E84AV					
11.0	MD□□□□160-22		E84AV 🗆 🗆 1134 🗆 🗆					
15.0	MD□□□□160-32		E84AV 🗆 🗆 1534 🗆 🗆					
18.5	MD□□□□180-12		E84AV 1834					
22.0	MD□□□□□180-32		E84AV□□□2234□□□					

5.9 - 11 Lenze | V06-de_DE-08/2018

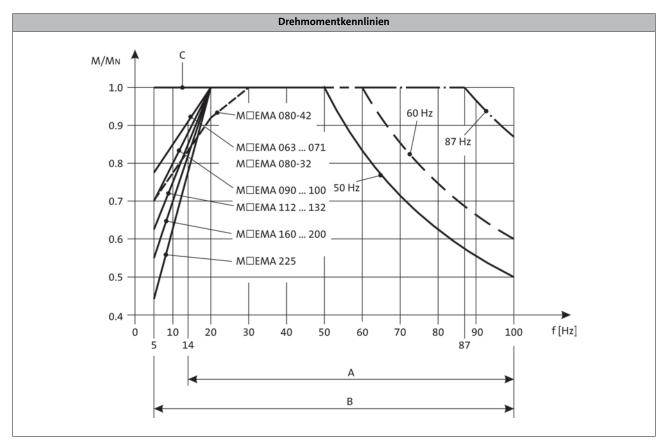
IE1-Drehstrommotoren MD

Allgemeines

Zuordnung Motor – Inverter

Bemessungsfrequenz 87 Hz

- Dezentraler Inverter 8400 motec (E84DVB)
 Inverter Drives 8400 (E84AV)


Bemessungsleistung		Produktschlüssel									
	Motor	Umri	chter								
P_N											
[kW]											
0.21	MD□□□□□063-12	E84DVB\(\text{B}\)\(\text{T}\)3714S\(\text{D}\)\(\text{D}\)	F04A\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
0.33	MD□□□□063-32	E84DVBU3/145UUU2U	E84AV□□□3714□□□								
0.45	MD□□□□□063-42 MD□□□□□071-12	E84DVB□5514S□□□2□	E84AV 0005514000								
0.66	MD□□□□□071-32	E84DVB□7514S□□□2□	E84AV□□□7514□□□								
1.00	MD□□□□□071-42 MD□□□□□080-12	E84DVB□1124S□□□2□	E84AV								
1.35	MD□□□□080-32	E84DVB□1524S□□□2□	E84AV□□□1524□□□								
2.00	MD□□□□□080-42 MD□□□□□090-12	E84DVB□2224S□□□2□	E84AV 🗆 🗆 2224 🗆 🗆								
2.70	MD□□□□090-32	E84DVB□3024S□□□2□	E84AV□□□3024□□□								
3.90	MD□□□□100-12	E84DVB□4024S□□□2□	E84AV 4024								
5.40	MD□□□□100-32	E84DVB□5524S□□□2□	E84AV								
7.10	MD□□□□□112-22	E84DVB□7524S□□□2□	E84AV								
9.70	MD□□□□132-12		E84AV								
13.2	MD□□□□132-22		E84AV□□□1534□□□								
19.3	MD□□□□160-22		E84AV								
26.4	MD□□□□160-32		E84AV□□□3034□□□								
32.4	MD□□□□180-12		E84AV□□□3734□□□								

5.9 - 12 Lenze | V06-de_DE-08/2018

Dimensionierung

Drehmomentreduzierung bei niedrigen Motorfrequenzen

Das Diagramm zeigt die motorbaugrößenabhängige Drehmomentreduzierung bei eigenbelüfteten Motoren unter Berücksichtigung des thermischen Verhaltens beim Betrieb am Inverter.

- A = Betrieb mit Eigenlüfter und Bremse
- $\label{eq:B-B-B} \textbf{B} = \textbf{Betrieb mit Eigenl\"{u}fter und Bremsenansteuerung } \textbf{,Haltestromabsenkung} \textbf{``Haltestromabsenkung''}$
- ▶ Die in diesem Katalog genannten technischen Daten der Motoren im Inverterbetrieb gelten für den Betrieb an einem Lenze-Inverter. Fragen Sie im Zweifelsfall den Hersteller des Inverters, ob das Gerät den Motor mit den genannten technische Daten (z.B. Stellbereich, Eckfrequenz) betreiben kann.

Für eine genaue Antriebsauslegung können Sie unsere Projektierungssoftware den Drive Solution Designer nutzen.

Mit dem Drive Solution Designer können Sie die Antriebsauslegung schnell und mit einer hohen Qualität ausführen.

Die Software beinhaltet fundiertes und in der Praxis erprobtes Wissen über Antriebsanwendungen und elektromechanische Antriebskomponenten.

Bitte sprechen Sie Ihre zuständige Lenze Vertriebsgesellschaft an.

Lenze | V06-de_DE-08/2018 5.9 - 13

IE1-Drehstrommotoren MD

Allgemeines

5.9

5.9 - 14

Normen und Einsatzbedingungen

Schutzart			
EN 60529			IP55 1) IP65 1) IP66 1)
Energieeffizienzklasse			
IEC 60034-30			IE1 ²⁾
IEC 60034-2-1			Methodik Wirkungsgradmessung
Konformität			
CE			Niederspannungsrichtlinie
			2006/95/EG
EAC			TP TC 004/2011 (TR ZU 004/2011)
Approbation			
			UkrSEPRO
ccc			GB Standard 12350-2009
CSA			CSA 22.2 No. 100
cURus ³)			File-No. E210321 UL 1004-1 UL 1004-8
Wärmeklasse			
IEC/EN 60034-1; Ausnutzung			В
IEC/EN 60034-1; Isolationsaufbau (Lackdraht)			F
Min. Betriebs-Umgebungstemperatur			
	T _{opr,min}	[°C]	-20
Max. Betriebs-Umgebungstemperatur			
	T _{opr,max}	[°C]	40
Mit Leistungsreduzierung	T _{opr,max}	[°C]	60
Aufstellungshöhe			
über NN	H _{max}	[m]	4000
Max. Drehzahl			
	n _{max}	[r/min]	4500

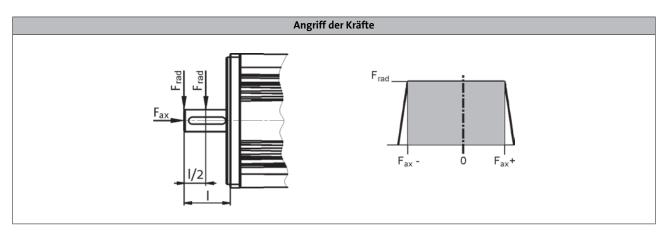
Abweichende Schutzarten bei Ausführungen: Mit Bremse IP55 (mit Handlüfthebel IP54). Mit Resolver RS1 IP54.

▶ In der Europäischen Union schreibt die ErP-Richtlinie Mindestwirkungsgrade für Drehstrommotoren vor. Drehstrommotoren, die nicht dieser Richtlinie entsprechen, sind nicht CE-konform und dürfen nicht im Europäischen Wirtschaftsraum in Verkehr gebracht werden. Nähere Informationen zur ErP-Richtlinie, zu Effizienzregularien in weiteren Ländern sowie zu den betroffenen Lenze-Produkten finden Sie in der Broschüre "Internationale Effizienzrichtlinien für Drehstrommotoren".

5.9

Lenze | V06-de_DE-08/2018 5.9 - 15

Mit HTL-Inkremental IG128-24V-H IP54.


²⁾ Gilt nur für 4-polige Motoren.

³⁾ Motorbaugröße 225 in Vorbereitung.

Zulässige Radial- und Axialkräfte

► Kräfte bei mittlerer Drehzahl 2000 r/min.

Kraftangriff bei 1/2

	Lagerlebensdauer L _{10h}												
	10000 h			20000 h				30000 h			50000 h		
	F _{rad} [N]	F _{ax,-}	F _{ax,+}	F _{rad} [N]	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+} [N]	
063	600	-600	300	470	-480	180	410	-430	120	350	-370	70	
071	740	-800	470	590	-630	300	510	-550	220	430	-470	140	
080	960	-1090	580	770	-860	350	670	-760	250	570	-650	140	
090	1050	-1160	630	840	-920	390	730	-800	280	620	-690	160	
100	1490	-1490	910	1190	-1160	580	1050	-1010	430	890	-860	270	
112	2250	-2330	1340	1790	-1830	840	1570	-1600	610	1330	-1360	370	
132	3 3 0 0	-2150	1190	2640	-1670	710	2320	-1440	480	1970	-1210	250	
160	3750	-2700	1520	3000	-2130	950	2640	-1830	670	2250	-1440	360	
180	5620	-3270	1790	4500	-2580	1120	3960	-2210	790	3 3 7 5	-1750	420	
200	5620	-3270	1790	4500	-2580	1120	3960	-2210	790	3 3 7 5	-1750	420	
225	5 2 0 0	-3100	3900	3900	-2100	2900	3 3 0 0	-1300	2100	2650	-1000	1800	

- Die Werte der Lagerlebensdauer L_{10h} beziehen sich auf eine mittlere Drehzahl von 2000 r/min und werden, abhängig von den Umgebungstemperaturen, zusätzlich durch die Fettgebrauchsdauer eingeschränkt.
- ▶ Die Angaben der Axialkräfte beziehen sich auf die max. Radialkraft bei entsprechender Lagerlebensdauer.

Zulässige Radial- und Axialkräfte

► Kräfte bei mittlerer Drehzahl 2000 r/min.

Kraftangriff bei l

	Lagerlebensdauer L _{10h}												
	10000 h			20000 h				30000 h			50000 h		
	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	F _{rad}	F _{ax,-}	F _{ax,+}	
	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	
063	400	-600	300	370	-480	180	320	-430	120	300	-370	70	
071	680	-800	470	540	-630	300	470	-550	220	400	-470	140	
080	880	-1090	580	700	-860	350	610	-760	250	520	-650	140	
090	940	-1160	630	750	-920	390	660	-800	280	560	-690	160	
100	1350	-1490	910	1080	-1160	580	940	-1010	430	800	-860	270	
112	2040	-2330	1340	1620	-1830	840	1420	-1600	610	1210	-1360	370	
132	3020	-2150	1190	2420	-1670	710	2120	-1440	480	1800	-1210	250	
160	3410	-2700	1520	2730	-2130	950	2400	-1830	670	2050	-1440	360	
180	4550	-3270	1790	3640	-2580	1120	3 2 0 0	-2210	790	2730	-1750	420	
200	4550	-3270	1790	3640	-2580	1120	3200	-2210	790	2730	-1750	420	
225	4800	-3100	3900	3600	-2100	2900	3000	-1300	2100	2400	-1000	1800	

- ▶ Die Werte der Lagerlebensdauer L_{10h} beziehen sich auf eine mittlere Drehzahl von 2000 r/min und werden, abhängig von den Umgebungstemperaturen, zusätzlich durch die Fettgebrauchsdauer eingeschränkt.
- Die Angaben der Axialkräfte beziehen sich auf die max. Radialkraft bei entsprechender Lagerlebensdauer.

Lenze | V06-de_DE-08/2018 5.9 - 17

Bemessungsdaten 50 Hz

	P _N	n _N	U _{N, Δ} 2)	I _{N, Δ}	U _{N, Y}	I _{N, Y}	I _a /I _N
			± 10 %		± 10 %		
	[kW]	[r/min]	[V]	[A]	[V]	[A]	
MD□□□□063-12	0.12	1425	230	0.85	400	0.49	3.1
MD□□□□□063-32	0.18	1365	230	1.00	400	0.58	2.7
MD□□□□□063-42	0.25	1370	230	1.40	400	0.82	2.9
MD□□□□071-12	0.25	1370	230	1.30	400	0.75	2.9
MD□□□□071-32	0.37	1410	230	1.60	400	0.95	3.3
MD□□□□071-42	0.55	1405	230	2.40	400	1.40	3.5
MD□□□□080-12	0.55	1390	230	2.50	400	1.40	3.8
MD□□□□□080-32	0.75	1410	230	3.30	400	1.90	4.6
MD□□□□□080-42	1.10	1390	230	4.80	400	2.80	4.4
MD□□□□090-12	1.10	1390	230	4.80	400	2.80	4.1
MD□□□□090-32	1.50	1410	230	6.60	400	3.80	4.8
MD□□□□100-12	2.20	1440	230	9.20	400	5.30	6.0
MD□□□□100-32	3.00	1430	230	12.5	400	7.20	4.6
MD112-22	4.00	1450	230	16.1	400	9.30	6.2
MD0000132-12	5.50	1450	230 400³)	20.2 11.7	400	11.7	4.0
MD132-22	7.50	1455	230 400 ³)	28.6 16.5	400	16.5	5.9

	M _N	M _a	M _b	cos φ	η _{75 %}	η _{100 %}	J 1)	m 1)
	[Nm]	[Nm]	[Nm]		[%]	[%]	[kgcm²]	[kg]
MD□□□□□063-12	0.80	2.50	2.64	0.56	58.0	63.0	3.30	4.10
MD□□□□□063-32	1.26	2.50	2.61	0.70	63.0	64.0	3.30	4.10
MD□□□□□063-42	1.74	3.80	4.10	0.67	65.0	66.0	3.70	4.40
MD□□□□□071-12	1.74	3.10	3.10	0.75	65.0	66.0	8.30	5.80
MD□□□□□071-32	2.51	4.76	5.81	0.77	73.0	73.0	10.7	5.80
MD□□□□□071-42	3.74	7.85	9.12	0.77	74.0	74.0	12.8	6.40
MD□□□□□080-12	3.80	6.80	7.20	0.80	70.0	70.0	16.9	10.0
MD□□□□□080-32	5.10	11.0	12.1	0.80	73.0	74.0	26.0	11.0
MD□□□□□080-42	7.50	16.5	18.4	0.80	77.0	77.0	26.0	11.0
MD□□□□□090-12	7.56	15.5	16.0	0.81	75.0	75.0	23.2	12.0
MD□□□□□090-32	10.1	23.7	27.1	0.76	78.0	79.0	28.4	15.0
MD ====100-12	14.6	38.0	44.0	0.73	83.0	84.0	61.0	24.0
MD□□□□100-32	20.5	43.0	50.0	0.75	83.0	83.0	61.0	24.0
MD□□□□□112-22	26.3	70.0	95.0	0.73	85.0	86.0	107	31.0
MD□□□□132-12	36.2	100	110	0.75	86.0	86.0	188	56.0
MD□□□□132-22	49.2	100	150	0.76	87.0	88.0	336	66.0

¹⁾ Ohne Zubehör

²⁾ Der Betrieb bei 87 Hz ist mit 4-poligen Motoren möglich, deren Bemessungsdaten bei 50 Hz die Spannungswerte Δ 230 V aufweisen. Bei den Motorgrößen 132-12 bis 180-32 muss bei der Bestellung zusätzlich die benötigte Spannung angeben werden.

3) Stern-Dreieck-Anlauf bei 400 V möglich.

Bemessungsdaten 50 Hz

	P_{N}	n _N	U _{N, Δ} 2)	I _{N, Δ}	U _{N, Y}	I _{N, Y}	I _a /I _N
			± 10 %		± 10 %		
	[kW]	[r/min]	[V]	[A]	[V]	[A]	
MD160-22	11.0	1460	230 400³)	36.5 21.0	400	21.0	7.0
MD□□□□□160-32	15.0	1460	230 400³)	48.4 27.8	400	27.8	7.1
MD□□□□180-12	18.5	1470	230 400³)	57.8 32.8	400	32.8	6.8
MD□□□□180-32	22.0	1465	230 400³)	67.4 38.8	400	38.8	7.3

	M _N	Ma	M _b	cos ф	η _{75 %}	η _{100 %}	J 1)	m 1)
	[Nm]	[Nm]	[Nm]		[%]	[%]	[kgcm²]	[kg]
MD□□□□□160-22	71.9	150	204	0.85	89.2	89.0	610	110
MD□□□□□160-32	98.1	214	288	0.87	89.7	90.0	750	130
MD□□□□□180-12	120	260	313	0.90	90.7	90.5	1350	165
MD□□□□180-32	144	330	360	0.90	91.2	91.0	1550	175

¹⁾ Ohne Zubehör
2) Der Betrieb bei 87 Hz ist mit 4-poligen Motoren möglich, deren Bemessungsdaten bei 50 Hz die Spannungswerte Δ 230 V aufweisen.
Bei den Motorgrößen 132-12 bis 180-32 muss bei der Bestellung zusätzlich die benötigte Spannung angeben werden.
3) Stern-Dreieck-Anlauf bei 400 V möglich.

Bemessungsdaten 60 Hz

	P _N	n _N	U _{N, Δ} 2)	I _{N, Δ}	U _{N, Y}	I _{N, Y}	I _a /I _N
			± 10 %		± 10 %		
	[kW]	[r/min]	[V]	[A]	[V]	[A]	
MD□□□□063-12	0.12	1735	265	0.69	460	0.40	4.0
MD□□□□□063-32	0.18	1695	265	0.80	460	0.46	3.6
MD□□□□□063-42	0.25	1680	265	1.30	460	0.75	3.8
MD□□□□071-12	0.25	1680	265	1.10	460	0.65	3.3
MD□□□□071-32	0.37	1720	265	1.50	460	0.84	3.9
MD□□□□071-42	0.55	1720	265	2.10	460	1.20	4.1
MD□□□□080-12	0.55	1700	265	2.10	460	1.20	4.3
MD□□□□□080-32	0.75	1720	265	2.90	460	1.70	5.6
MD□□□□080-42	1.10	1705	265	4.20	460	2.40	5.4
MD□□□□090-12	1.10	1700	265	4.20	460	2.40	4.5
MD□□□□090-32	1.50	1720	265	5.80	460	3.40	5.7
MD□□□□100-12	2.20	1745	265	8.10	460	4.70	6.9
MD□□□□100-32	3.00	1740	265	10.8	460	6.30	5.3
MD112-22	4.00	1755	265	14.1	460	8.20	6.9
MD::::::::::::::::::::::::::::::::::::	5.50	1755	265 460³)	17.5 10.1	460	10.1	4.5
MD0000132-22	7.50	1760	265 460³)	25.7 14.8	460	14.8	6.5

	M _N	M _a	M _b	cos φ	η _{75 %}	η _{100 %}	J 1)	m 1)
	[Nm]	[Nm]	[Nm]		[%]	[%]	[kgcm²]	[kg]
MD□□□□□063-12	0.66	2.25	2.64	0.55	58.0	63.0	3.30	4.10
MD□□□□□063-32	1.00	2.21	2.56	0.68	65.0	66.0	3.30	4.10
MD□□□□□063-42	1.40	3.71	4.20	0.60	64.0	66.0	3.70	4.40
MD□□□□□071-12	1.40	2.80	2.80	0.73	67.0	68.0	8.30	5.80
MD□□□□071-32	2.05	4.40	5.80	0.74	74.0	75.0	10.7	5.80
MD□□□□□071-42	3.05	7.00	9.00	0.73	76.0	77.0	12.8	6.40
MD□□□□080-12	3.10	6.20	6.55	0.78	76.0	79.0	16.9	10.0
MD□□□□□080-32	4.16	10.3	12.2	0.78	78.0	78.0	26.0	11.0
MD□□□□□080-42	6.16	15.5	18.5	0.78	79.0	80.0	26.0	11.0
MD□□□□□090-12	6.18	14.0	14.5	0.75	78.0	79.0	23.2	12.0
MD□□□□□090-32	8.33	22.0	27.0	0.73	79.0	81.0	28.4	15.0
MD ====100-12	12.0	33.0	43.0	0.71	83.0	85.0	61.0	24.0
MD□□□□100-32	16.5	38.0	48.0	0.73	84.0	85.0	61.0	24.0
MD =====112-22	21.8	57.0	89.0	0.72	85.0	87.0	107	31.0
MD□□□□132-12	29.9	85.0	103	0.74	87.0	88.0	188	56.0
MD□□□□132-22	40.7	83.0	137	0.75	88.0	89.0	336	66.0

¹⁾ Ohne Zubehör

²⁾ Der Betrieb bei 87 Hz ist mit 4-poligen Motoren möglich, deren Bemessungsdaten bei 60 Hz die Spannungswerte Δ 265 V aufweisen. Bei den Motorgrößen 132-12 bis 180-32 muss bei der Bestellung zusätzlich die benötigte Spannung angeben werden.

3) Stern-Dreieck-Anlauf bei 460 V möglich.

Bemessungsdaten 60 Hz

	P _N	n _N	U _{N, Δ} 2)	I _{N, Δ}	U _{N, Y}	I _{N, Y}	I _a /I _N
			± 10 %		± 10 %		
	[kW]	[r/min]	[V]	[A]	[V]	[A]	
MD□□□□160-22	11.0	1770	265 460³)	31.7 18.3	460	18.3	7.6
MD□□□□□160-32	15.0	1760	265 460³)	40.7 23.5	460	23.5	7.6
MD□□□□□180-12	18.5	1780	265 460³)	48.5 28.0	460	28.0	7.2
MD□□□□180-32	22.0	1760	265 460³)	57.2 33.0	460	33.0	7.6

	M _N	Ma	M _b	cos ф	η _{75 %}	η _{100 %}	J 1)	m 1)
	[Nm]	[Nm]	[Nm]		[%]	[%]	[kgcm²]	[kg]
MD□□□□□160-22	59.5	122	187	0.84	91.1	90.0	610	110
MD□□□□□160-32	81.2	171	265	0.87	92.6	92.0	750	130
MD□□□□□180-12	99.3	203	287	0.90	93.0	92.0	1350	165
MD□□□□180-32	119	248	331	0.90	94.0	93.0	1550	175

 ¹⁾ Ohne Zubehör
 2) Der Betrieb bei 87 Hz ist mit 4-poligen Motoren möglich, deren Bemessungsdaten bei 60 Hz die Spannungswerte Δ 265 V aufweisen.
 Bei den Motorgrößen 132-12 bis 180-32 muss bei der Bestellung zusätzlich die benötigte Spannung angeben werden.
 3) Stern-Dreieck-Anlauf bei 460 V möglich.

IE1-Drehstrommotoren MD

Technische Daten

Bemessungsdaten 87 Hz

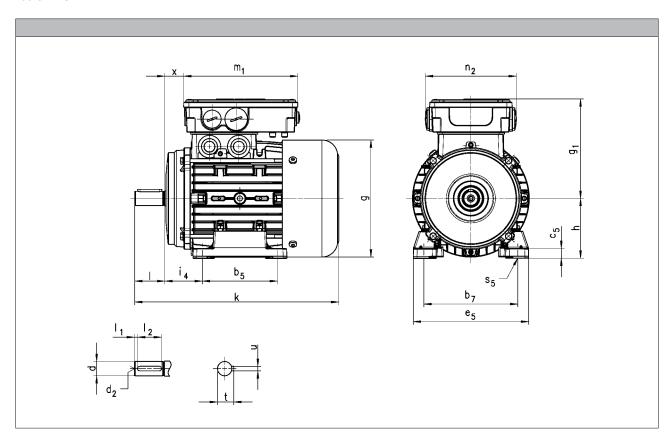
4-polige Motoren

	P _N	n _N	M _N	M _{max}	U _{N, Δ}	Ι _{Ν, Δ}	cos φ	η _{75 %}	η _{100 %}	J 1)	m 1)
					± 10 %						
	[kW]	[r/min]	[Nm]	[Nm]	[V]	[A]		[%]	[%]	[kgcm²]	[kg]
MD□□□□□063-12	0.21	2535	0.80	3.20	400	0.85	0.52	61.0	66.0	3.30	4.10
MD□□□□□063-32	0.33	2475	1.26	5.00	400	1.00	0.65	68.0	71.0	3.30	4.10
MD□□□□□063-42	0.45	2480	1.74	7.00	400	1.40	0.63	66.0	73.0	3.70	4.40
MD□□□□□071-12	0.45	2480	1.74	7.00	400	1.30	0.74	66.0	68.0	8.30	5.80
MD□□□□□071-32	0.66	2520	2.51	10.0	400	1.60	0.72	76.0	78.0	10.7	5.80
MD = = = = = 071-42	1.00	2515	3.74	15.0	400	2.40	0.74	79.0	80.0	12.8	6.40
MD□□□□□080-12	1.00	2500	3.80	15.0	400	2.50	0.78	72.0	72.0	16.9	10.0
MD□□□□□080-32	1.35	2520	5.10	20.0	400	3.30	0.80	75.0	77.0	26.0	11.0
MD□□□□080-42	2.00	2500	7.50	30.0	400	4.80	0.80	81.0	82.0	26.0	11.0
MD□□□□090-12	2.00	2500	7.56	30.0	400	4.80	0.78	77.0	77.0	23.2	12.0
MD□□□□□090-32	2.70	2520	10.1	40.0	400	6.70	0.73	83.0	85.0	28.4	15.0
MD□□□□100-12	3.90	2550	14.6	60.0	400	9.20	0.71	87.0	88.0	61.0	24.0
MD□□□□100-32	5.40	2540	20.5	80.0	400	12.5	0.73	87.0	88.0	61.0	24.0
MD□□□□□112-22	7.10	2560	26.3	105	400	16.1	0.71	87.0	88.0	107	31.0
MD□□□□132-12	9.70	2560	36.2	145	400	20.1	0.74	90.0	90.0	188	56.0
MD□□□□132-22	13.2	2565	49.2	200	400	28.6	0.75	90.0	90.0	336	66.0
MD□□□□□160-22	19.3	2565	71.9	280	400	36.5	0.85	91.7	90.0	610	110
MD□□□□□160-32	26.4	2565	98.1	390	400	48.4	0.86	91.9	92.0	750	130
MD□□□□180-12	32.4	2575	120	480	400	57.8	0.89	92.8	92.0	1350	165
MD□□□□□180-32	38.7	2560	144	572	400	67.4	0.89	92.8	92.0	1550	175

¹⁾ Ohne Zubehör

IE1-Drehstrommotoren MD

Technische Daten



Lenze | V06-de_DE-08/2018 5.9 - 23

Abmessungen, eigenbelüftet (4-polig)

Bauform B3

Motortyp												
			MDE/	MAXX					MDE	MABR		
	k	g []	g ₁	X	m ₁	n ₂	k	g []	g ₁	X	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	215	123	109	17	136	103	271	123	109	17	136	103
071	246	139	118	24	130	103	297	139	118	24	130	103
080	272	156	132	25			345	154	132	25		
090	311	176	137	29	152	121	373	176	137	29	152	121
100	382	194	147	36	152	121	458	194	147	36	152	121
112	392	218	158	38			479	218	158	38		
132	497	258	187	51	194	125	576	258	187	51	194	125
160	5981)	210	220	69			703 1)	212	220	69		
160	642 2)	310	220	9	253	152	745 ²⁾	313	220	9	253	152
180	671	348	239	75			784	351	239	75		

1) 160-22 2) 160-32

Abmessungen, eigenbelüftet (4-polig)

Bauform B3

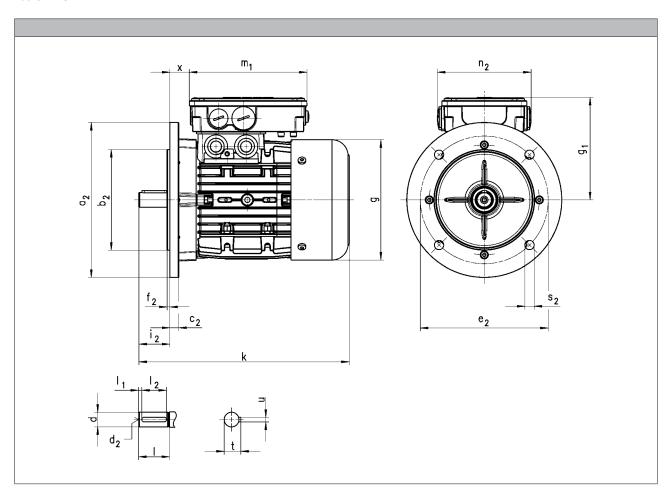
Motortyp		
	MDEMARS	MDEMABS
	MDEMAIG	MDEMABI
	MDEMAAG	MDEMABA

	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	271	123	109	17	136	103	318	123	124	8		
071	297	139	118	24	130	103	341	139	133	13		
080	369	156	132	25			383	156	142	24		
090	392	178	137	29	152	121	410	176	147	28	194	125
100	463	196	147	36	132	121	483	194	158	35		
112	472	220	158	38			512	218	168	37		
132	599	261	187	51	194	125	621	258	187	51		
160	681 1)	313	220	69			789 1)	313	220	69		
100	725 2)	313	220	09	253 15	152	833 2)	313	220	09	253	152
180	750	351	239	75			864	351	239	75		

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60		50	31.0	8.0
112	20		MIO	80	5.0	30	31.0	
132		38	M12	80	3.0	70	41.0	10.0
160		42	M16	110		100	45.0	12.0
180		48	MITO	110		100	51.5	14.0

	b ₇	i ₄	b ₅	e ₅	h	c ₅	S ₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	100	40	80	120	63	10	7.0
071	112	45	90	134	71	11	7.0
080	125	50	100	154	80	13	10.0
090	140	56	100	174	90	13	10.0
100	160	63	140	194	100	15	
112	190	70	140	223	112	14	12.0
132	216	89	178	260	132	16	
160	254	108	210 1)	305	160	22	
100	234	108	254 2)	303	100	22	14.5
180	279	121	241 3)	250	180	23	14.3
190	2/9	121	279 4)	350	190	25	

^{1) 160-22} 2) 160-32 3) 180-12 4) 180-32


5.9 - 25 Lenze | V06-de_DE-08/2018

Technische Daten

Abmessungen, eigenbelüftet (4-polig)

Bauform B5

Motortyp												
			MDE/	MAXX					MDE	MABR		
	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	215	123	109	17	126	102	271	123	109	17	126	102
071	246	139	118	24	136	103	297	139	118	24	136	103
080	272	156	132	25			345	154	132	25		
090	311	176	137	29	150	121	373	176	137	29	150	121
100	382	194	147	36	152	121	458	194	147	36	152	121
112	392	218	158	38			479	218	158	38		
132	497	258	187	51	194	125	576	258	187	51	194	125
160	5981)	310	220	69			703 1)	313	220	69		
100	642 2)	210	220	09	253	3 152	745 ²⁾	212	220	09	253	152
180	671	348	239	75			784	351	239	75		

1) 160-22 2) 160-32

Abmessungen, eigenbelüftet (4-polig)

725²⁾

Bauform B5

Motortyp												
			MDE	MARS MAIG MAAG			MDEMABS MDEMABI MDEMABA					
	k	g	g ₁	х	m ₁	n ₂	k	g	g ₁	х	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	271	123	109	17	136	103	318	123	124	8		
071	297	139	118	24	150	105	341	139	133	13		
080	369	156	132	25			383	156	142	24		
090	392	178	137	29	152	121	410	176	147	28	194	125
100	463	196	147	36	152	121	483	194	158	35		
112	472	220	158	38			512	218	168	37		
132	599	261	187	51	194	125	621	258	187	51		
	681 1)						7891)					

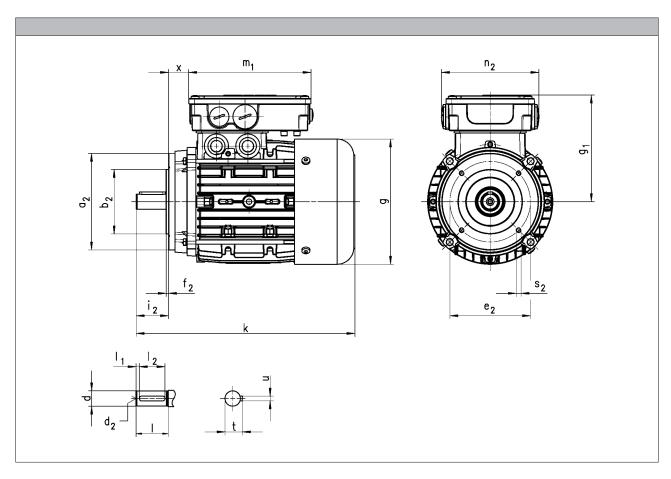
833 2)

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60		50	31.0	8.0
112	20		MIO	60	5.0	50	51.0	
132		38	M12	80	5.0	70	41.0	10.0
160		42	M16	110		100	45.0	12.0
180		48	MITO	110		100	51.5	14.0

	Flanschgröße							
		a ₂	b ₂	c ₂	e ₂	f ₂	s ₂	i ₂
			j6					-0.6 0.5
		[mm]						
063	FF115	140	95	10	115	3.0	10.0	23.0
071	FF130	160	110	10	130		10.0	30.0
080	FF165	200	130	11	165	3.5	12.0	40.0
090	FF103	200	130	11	103		12.0	50.0
100	FF215	250	180	15	215			60.0
112	FF213	230	180	13	213	4.0	14.5	60.0
132	FF265	300	230	20	265			80.0
160	FF300	350	250	13	300	5.0	18.5	110
180	11300	JJ0	230	13	500	5.0	10.5	110

Lenze | V06-de_DE-08/2018 5.9 - 27

^{1) 160-22} 2) 160-32


Technische Daten

Abmessungen, eigenbelüftet (4-polig)

Bauform B14

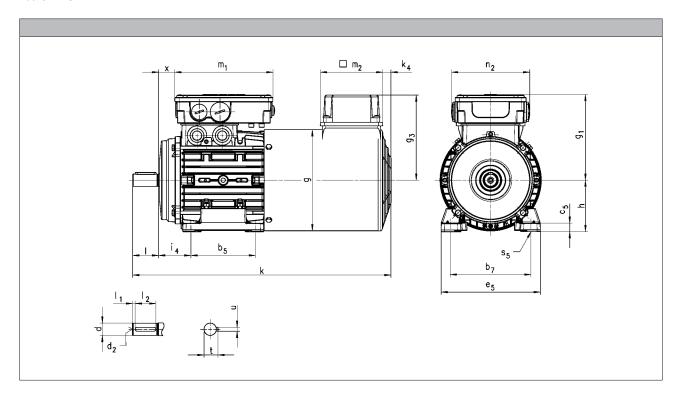
Motortyp												
			MDE	MAXX					MDE	MABR		
	k	g	g ₁	x	m ₁	n ₂	k	g	g ₁	x	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	215	123	109	17	136	102	271	123	109	17	136	103
071	246	139	118	24	130	103	297	139	118	24	150	105
080	272	156	132	25			345	154	132	25		
090	311	176	137	29	150	121	373	176	137	29	152	121
100	382	194	147	36	152	121	458	194	147	36	132	121
112	392	218	158	38			479	218	158	38		

Abmessungen, eigenbelüftet (4-polig)

Bauform B14

Motortyp		
	MDEMARS	MDEMABS
	MDEMAIG	MDEMABI
	MDEMAAG	MDEMABA

	k	g	g ₁	Х	m ₁	n ₂	k	g	g 1	X	m ₁	n ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	271	123	109	17	126	103	318	123	124	8		
071	297	139	118	24	136	103	341	139	133	13		
080	369	156	132	25			383	156	142	24	194	125
090	392	178	137	29	150	121	410	176	147	28	154	123
100	463	196	147	36	152	121	483	194	158	35		
112	472	220	158	38			512	218	168	37		


	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112	20		74/10	60		30	31.0	

	Flanschgröße						
		a ₂	b ₂	e ₂	f ₂	s ₂	i ₂
			j6				-0.6 0.5
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	FT75	90	60	75	2.5	M5x10	23.0
071	FT85	105	70	85	2.3	M6x10	30.0
080	FT100	120	80	100	3.0	M6x12	40.0
080	FT130	160	110	130	3.5	M8x14	40.0
090	FT115	140	95	115	3.0	M8x16	50.0
090						MOXIO	30.0
100	FT130	160	110	130	3.5	M8x14	60.0
112						M8x16	00.0

Lenze | V06-de_DE-08/2018 5.9 - 29

Bauform B3

Motortyp																		
				MI	DFMAX	Х							MI	DFMAB	R			
	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	103	115			385	123	109	17	136	103	115		
071	373	138	118	24	130	103	122			410	138	118	24	130	103	122		
080	400	156	132	25			133			455	156	132	25			133		
090	434	176	137	29	152	121	141			487	176	137	29	152	121	141		
100	491	194	147	36	132	121	150	0	105	552	194	147	36	132	121	150	0	105
112	494	218	158	38			162	U	103	575	218	158	38			162		103
132	612	257	187	51	194	125	182			698	257	187	51	194	125	182		
160	747 1)	309	220	69						777 1)	309	220	69					
160	791 2)	509	220	69	253	152	209			821 2)	509	220	69	253	152	209		
180	820	348	239	75						886	348	239	75					

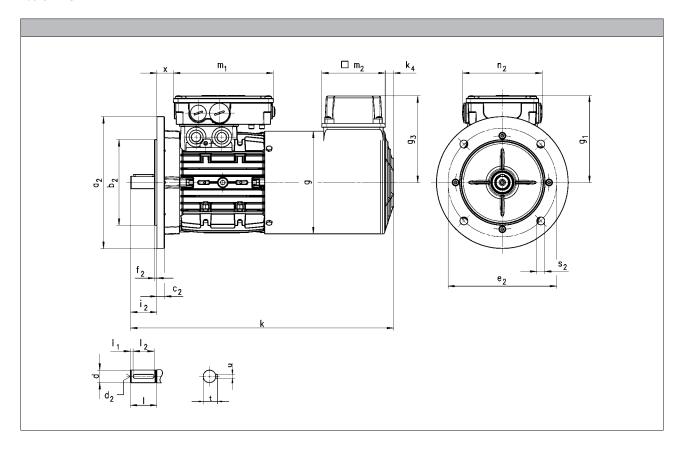
¹⁾ 160-22 ²⁾ 160-32

Bauform B3

Motortyp															
				M	DFMAR	S					Ν	DFMAI	BS		
				M	DFMAI	G					Ν	IDFMA	BI		
	MDFMAAG										Μ	DFMA	3A		

	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	103	115			385	123	124	8			115		
071	373	138	118	24	130	103	122			410	138	133	13			122		
080	400	156	132	25			133			455	156	142	24			133		
090	434	176	137	29	152	121	141			487	176	147	28	194	125	141		
100	491	194	147	36	132	121	150	0	105	552	194	158	35			150	0	105
112	575	218	158	38			162	0	103	575	218	168	37			162	0	105
132	698	257	187	51	194	125	182			698	257	187	51			182		
160	8221)	309	220	69						8351)	309	220	69					
100	866 2)	309	220	09	253	152	209			879 2)	309	220	09	253	152	209		
180	886	348	239	75						946	348	239	75					

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60		50	31.0	8.0
112	20		MIO	80	5.0	30	31.0	
132		38	M12	80	3.0	70	41.0	10.0
160		42	M16	110		100	45.0	12.0
180		48	MITO	110		100	51.5	14.0


	b ₇	i ₄	b ₅	e ₅	h	c ₅	s ₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	100	40	80	120	63	10	7.0
071	112	45	90	134	71	11	7.0
080	125	50	100	154	80	13	10.0
090	140	56	100	174	90	13	10.0
100	160	63	140	194	100	15	
112	190	70	140	223	112	14	12.0
132	216	89	178	260	132	16	
160	254	108	210 1)	305	160	22	
160	234	108	254 2)	303	160	22	14.5
180	30 279	121	241 3)	350	180	23	14.3
180		121	279 4)	330	180	25	

^{1) 160-22} 2) 160-32 3) 180-12 4) 180-32

5.9 - 31 Lenze | V06-de_DE-08/2018

Bauform B5

Motortyp																		
				MI	DFMAX	Х							MI	DFMAB	R			
	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	103	115			385	123	109	17	136	103	115		
071	373	138	118	24	130	103	122			410	138	118	24	130	103	122		
080	400	156	132	25			133			455	156	132	25			133		
090	434	176	137	29	152	121	141			487	176	137	29	152	121	141		
100	491	194	147	36	152	121	150	0	105	552	194	147	36	152	121	150	0	105
112	494	218	158	38			162	U	103	575	218	158	38			162	U	103
132	612	257	187	51	194	125	182			698	257	187	51	194	125	182		
160	747 1)	309	220	69						777 1)	309	220	69					
100	791 ²⁾	509	220	69	253	152	209			8212)	509	220	09	253	152	209		
180	820	348	239	75						886	348	239	75					

¹⁾ 160-22 ²⁾ 160-32

Bauform B5

Motortyp																		
					DFMAR DFMAI	_								DFMAB DFMAB	_			
					DFMAA									DFMAB	-			
	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	103	115			385	123	124	8			115		
071	373	138	118	24	130	103	122			410	138	133	13			122		
080	400	156	132	25			133			455	156	142	24			133		
090	434	176	137	29	152	121	141			487	176	147	28	194	125	141		
100	491	194	147	36	132	121	150	0	105	552	194	158	35			150	0	105
112	575	218	158	38			162		103	575	218	168	37			162		103
132	698	257	187	51	194	125	182			698	257	187	51			182		

835 1)

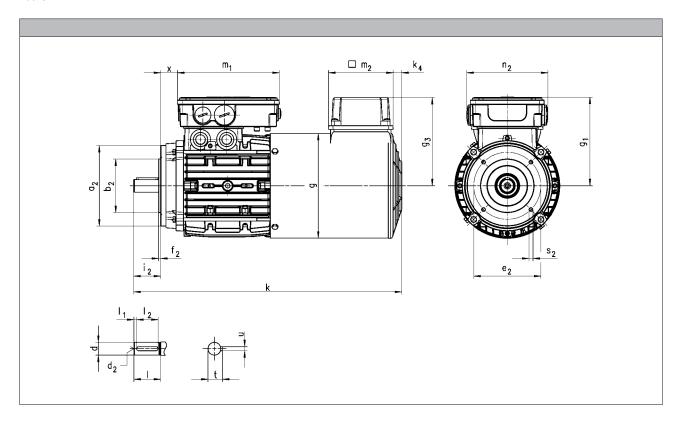
879²⁾

8221)

866 2)

	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60		50	31.0	8.0
112	20		MIO	60	5.0	50	51.0	
132		38	M12	80	3.0	70	41.0	10.0
160		42	M16	110		100	45.0	12.0
180		48	MITO	110		100	51.5	14.0

	Flanschgröße							
		a ₂	b ₂	c ₂	e ₂	f ₂	s ₂	i ₂
			j6					-0.6 0.5
		[mm]						
063	FF115	140	95	10	115	3.0	10.0	23.0
071	FF130	160	110	10	130		10.0	30.0
080	FF165	200	130	11	165	3.5	12.0	40.0
090	11103	200	130	11	103	3.5	12.0	50.0
100	FF215	250	180	15	215			60.0
112	11213	230	180	13	213	4.0	14.5	00.0
132	FF265	300	230	20	265			80.0
160	FF300	350	250	13	300	5.0	18.5	110
180	11300	000	230	13	300	3.0	18.5	110


Lenze | V06-de_DE-08/2018 5.9 - 33

^{1) 160-22} 2) 160-32

Abmessungen, fremdbelüftet (4-polig)

Bauform B14

Motortyp																		
				M	DFMAX	X				MDFMABR								
	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	102	115			385	123	109	17	136	103	115		
071	373	138	118	24	136	103	122			410	138	118	24	136	103	122		
080	400	156	132	25			133	133	105	455	156	132	25			133	0	105
090	434	176	137	29	152	121	141		103	487	176	137	29	152	121	141		
100	491	194	147	36	132	121	150			552	194	147	36	132	121	150		
112	494	218	158	38			162			575	218	158	38			162		

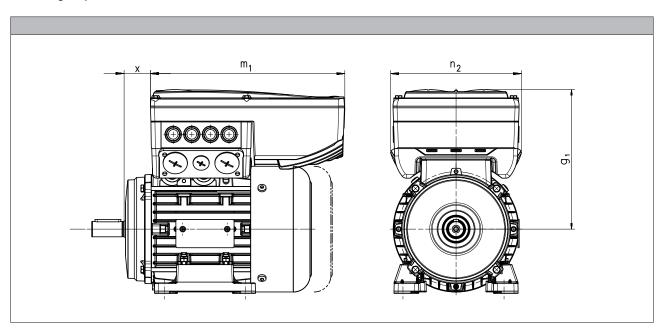
Abmessungen, fremdbelüftet (4-polig)

Bauform B14

Motortyp																		
				M	DFMAR	S							MI	DFMAB	S			
				M	DFMAI	G							M	DFMAE	Bl			
				M	DFMAA	G							M	DFMAB	Α			
	V	G	σ.	v	m.	n-	σ-	k.	m-	k	G	σ.	v	m.	n-	σ-	k.	m-

	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂	k	g	g ₁	Х	m ₁	n ₂	g ₃	k ₄	m ₂
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	345	123	109	17	136	103	115			385	123	124	8			115		
071	373	138	118	24	130	103	122			410	138	133	13			122	0	
080	400	156	132	25		121	133	0	105	455	156	142	24	194	125	133		105
090	434	176	137	29	152		141		3 103	487	176	147	28	194		141		
100	491	194	147	36	132	121	150			552	194	158	35			150		
112	575	218	158	38			162			575	218	168	37			162		

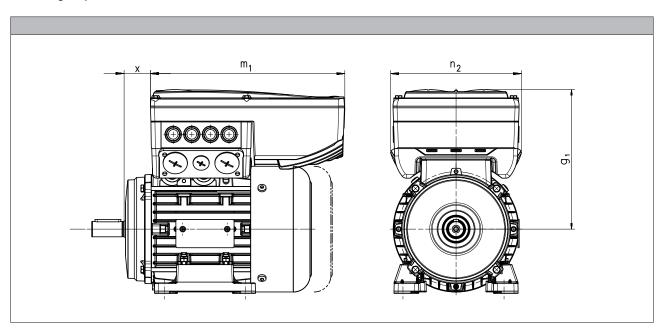
	d	d	d ₂	I	l ₁	l ₂	t	u
	j6	k6						
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	11		M4	23	3.5	16	12.5	4.0
071	14		M5	30	4.0	22	16.0	5.0
080	19		M6	40	4.0	32	21.5	6.0
090	24		M8	50		40	27.0	
100	28		M10	60	5.0	50	31.0	8.0
112	20		74/10	60		30	31.0	


	Flanschgröße						
		a ₂	b ₂	e ₂	f ₂	s ₂	i ₂
			j6				-0.6 0.5
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	FT75	90	60	75	2.5	M5x10	23.0
071	FT85	105	70	85	2.3	M6x10	30.0
080	FT100	120	80	100	3.0	M6x12	40.0
080	FT130	160	110	130	3.5	M8x14	40.0
090	FT115	140	95	115	3.0	M8x16	50.0
090						MOXIO	30.0
100	FT130	160	110	130	3.5	M8x14	60.0
112						M8x16	00.0

Lenze | V06-de_DE-08/2018 5.9 - 35

Abmessungen, Inverter 8400 motec

Bemessungsfrequenz 50/60 Hz



Produkt	tschlüssel				
Motor	Umrichter				
		g _{1, 50Hz}	m _{1, 50Hz}	n _{2, 50Hz}	x _{50Hz}
		[mm]	[mm]	[mm]	[mm]
MD□□□□□063-42		154			23.5
MD0000071-12	E84DVB\[3714S\[\] \[\] \[2\[\]				
MD□□□□□071-32		163			29.5
MD□□□□□071-42	E84DVB□5514S□□□2□				
MD□□□□□080-12	E84DVBL33143LLL2L		241	161	
MD□□□□□080-32	E84DVB□7514S□□□2□	172			32.5
MD□□□□□080-42	E84DVB□1124S□□□2□				
MD□□□□□090-12		177			36.2
MD□□□□□090-32	E84DVB□1524S□□□2□	1//			30.2
MD□□□□100-12	E84DVB□2224S□□□2□	217	260	176	42.4
MD□□□□□100-32	E84DVB□3024S□□□2□	217	200	170	42.4
MD□□□□□112-22	E84DVB□4024S□□□2□	282			32.0
MD□□□□132-12	E84DVB□5524S□□□2□	301	325	195	47.5
MD□□□□132-22	E84DVB□7524S□□□2□	501			77.5

Abmessungen, Inverter 8400 motec

Bemessungsfrequenz 87 Hz

Produkt	tschlüssel				
Motor	Umrichter				
		g _{1,87Hz}	m _{1,87Hz}	n _{2,87Hz}	x _{87Hz}
		[mm]	[mm]	[mm]	[mm]
MD□□□□□063-12	E84DVB□3714S□□□2□				
MD□□□□□063-32	E84DVBL37143LLL2L	154			23.5
MD□□□□□063-42	E84DVB□5514S□□□2□				
MD□□□□071-12			241	161	
MD□□□□071-32	E84DVB□7514S□□□2□	163	241	101	29.5
MD□□□□071-42	E84DVB□1124S□□□2□				
MD□□□□080-12		172			32.5
MD□□□□080-32	E84DVB□1524S□□□2□	172			32.3
MD□□□□080-42	E84DVB□2224S□□□2□	201			31.5
MD□□□□090-12		206	260	176	35.2
MD□□□□090-32	E84DVB□3024S□□□2□	200			33.2
MD□□□□100-12	E84DVB□4024S□□□2□	272			29.9
MD□□□□100-32	E84DVB□5524S□□□2□	212	325	195	23.3
MD0000112-22	E84DVB□7524S□□□2□	282			32.0

Lenze | V06-de_DE-08/2018 5.9 - 37

IE1-Drehstrommotoren MD

Technische Daten

5.9

5.9 - 38

Federkraftbremse

Die Drehstrommotoren können mit einer Federkraftbremse ausgestattet werden. Diese wird nach dem Abschalten der Versorgungsspannung aktiv (Ruhestromprinzip). Zur optimalen Anpassung des Bremsmomtors an die Applikation stehen in jeder Motorbaugröße mehrere Bremsmomente und Ansteuervarianten zur Verfügung. Für Anwendungen mit sehr hohen Schalthäufigkeiten ist zudem eine LongLife-Ausführung der Bremse erhältlich, die eine verstärkte Bremsenmechanik aufweist.

Eigenschaften

Ausführungen

- Standard
 - 1 x 10⁶ Schaltzyklen repetierend
 - 1 x 106 Schaltzyklen reversierend
- LongLife
 - 10 x 10⁶ Schaltzyklen repetierend
 - 15 x 106 Schaltzyklen reversierend

Ansteuerung

- DC-Versorgung
- AC-Versorgung über Gleichrichter im Klemmenkasten

Schutzart

- ohne Handlüftung IP55
- mit Handlüftung IP54

Reibbelag

Asbestfrei, verschleißarm

Optionen

- Handlüftung
- Approbation UL/CSA
- geräuscharm

Zuordnung 4-polige Motoren - Bremse

Bauform				
		Standard		LongLife
Motorgröße	Baugröße	Kennmoment	Baugröße	Kennmoment
	Bremse		Bremse	
		M_k		M_k
		[Nm]		[Nm]
063-02 063-12 063-22 063-32 063-42	06 06	2.50 4.00	06	4.00
071-12 071-32	06 06 08	2.50 4.00 3.50	06 08	4.00 3.50
071-42	06 06 08 08	2.50 4.00 3.50 8.00	06 08 08	4.00 3.50 8.00
080-12 080-32	08 08 10	3.50 8.00 7.00	08 10	8.00 7.00
080-42	08 08 10 10	3.50 8.00 7.00 16.0	08 10 10	8.00 7.00 16.0

Lenze | V06-de_DE-08/2018 5.9 - 39

Federkraftbremse

Zuordnung 4-polige Motoren - Bremse

Bauform		
	Standard	LongLife

		Standard		LongLife
Motorgröße	Baugröße	Kennmoment	Baugröße	Kennmoment
	Bremse		Bremse	
		M_k		M _k
		[Nm]		[Nm]
090-12 090-32	08 08 10 10	3.50 8.00 7.00 16.0 23.0	08 10 10	8.00 7.00 16.0
100-12	10 10 12 12	7.00 16.0 14.0 32.0	10	16.0
100-32	10 10 12 12 12	7.00 16.0 14.0 32.0 46.0	12 12	14.0 32.0
112-22 112-32	12 12 14 14	14.0 32.0 35.0 60.0		
132-12	14 14 16 16	35.0 60.0 60.0 80.0		
132-22 132-32	14 14 16 16 16	35.0 60.0 60.0 80.0 100		
160-22	16 16 18 18	60.0 80.0 80.0 150		
160-32	18 18 18	80.0 150 200		
180-12	18 18 20 20	80.0 150 145 260		
180-32	18 18 20 20 20	80.0 150 145 260 315		
180-42	18 18 20 20 20 20 20	80.0 150 145 260 315 400		

IE1-Drehstrommotoren MD

Zubehör

Federkraftbremse

Direkter Anschluss ohne Gleichrichter

Wird die Bremse direkt ohne Gleichrichter angesteuert, ist zum Schutz vor Induktionsspitzen eine Freilaufdiode oder ein Funkenlöschglied erforderlich.

Anschlussspannungen

DC 24 V

DC 180 V

DC 205 V

Anschluss über Netzspannung mit Bremsengleichrichter

Wird die Bremse nicht direkt mit einer Gleichspannung versorgt, ist ein Gleichrichter erforderlich. Dieser ist im Lieferumfang enthalten und befindet sich im Klemmenkasten des Motors. Der Gleichrichter wandelt die Wechselspannung des Anschlusses in eine Gleichspannung um. Folgende Gleichrichter sind verfügbar:

Einweggleichrichter, 6-polig

- Verhältnis Anschlussspannung / Bremsspulenspannung = 2.22
- Approbation UL / CSA
- Anschlussspannungen

AC 230 V

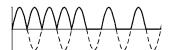
AC 400 V

AC 460 V

Brückengleichrichter, 6-polig

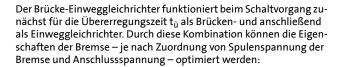
- Verhältnis Anschlussspannung / Bremsspulenspannung = 1.11
- Anschlussspannung AC 230 V

Brücke-Einweggleichrichter, 6-polig


- Verhältnis Anschlussspannung / Bremsspulenspannung bis zur Übererregungszeit = 1.11 ab der Übererregungszeit = 2.22
- Anschlussspannungen

AC 230 V

AC 400 V



Federkraftbremse

Anschluss über Netzspannung mit Bremsengleichrichter

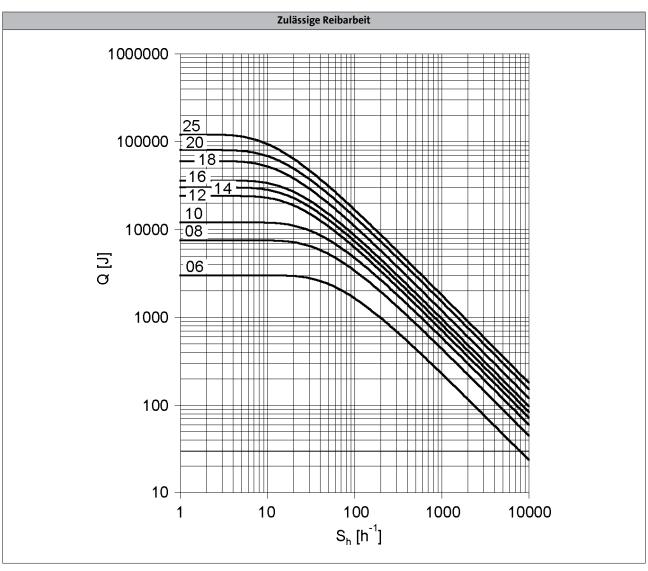
Brücke-Einweggleichrichter, 6-polig


- Verhältnis Anschlussspannung / Bremsspulenspannung bis zur Übererregungszeit = 1.11 ab der Übererregungszeit = 2.22
- Anschlussspannungen AC 230 V AC 400 V

• Kurzzeitige Übererregung der Bremsenspule

Indem die Bremsspule für die Übererregungszeit $t_{\ddot{u}}$ mit der doppelten Nennspannung angesteuert wird, lässt sich die Trennzeit reduzieren. Die Bremse öffnet schneller und der Verschleiß des Reibbelages sinkt.

Aufgrund dieser Eigenschaften eignet sich diese Ansteuerungsvariante besonders für Hebeanwendungen. Sie ist daher nur in Kombination mit einer Bremse mit erhöhtem Bremsmoment erhältlich.


• Haltestromabsenkung (Cold Brake)

Durch eine Haltestromabsenkung reduziert der Brücke-Einweggleichrichter die Leistungsaufnahme der geöffneten Bremse. Da sich die Bremse weniger erwärmt, wird diese Ansteuerung als "Cold Brake" bezeichnet.

Zubehör

Federkraftbremse

Q =Schaltarbeit pro Schaltspiel S_h =Schalthäufigkeit Bremsengröße = 06 ... 25

Lenze | V06-de_DE-08/2018 5.9 - 43

Zubehör

Federkraftbremse

Bemessungsdaten mit reduziertem Bremsmoment

- ► Beim Bremsmoment und der Höchstschaltarbeit ist die Einheit für die Werte (100 ... 3600) r/min.
- ► Nicht aufgeführte Bremsmomente und Höchstschaltarbeiten bitte anfragen.

Baugröße											
			06	08	10	12	14	16	18	20	25
Leistungsaufnahme						ı				ı	ı
	P _{in}	[kW]	0.020	0.025	0.030	0.040	0.050	0.055	0.085	0.10	0.11
Bremsmoment											
100	M _B	[Nm]	2.50	3.50	7.00	14.0	35.0	60.0	80.0	145	265
1000	M _B	[Nm]	2.30	3.10	6.10	12.0	30.0	50.0	65.0	115	203
1200	M _B	[Nm]	2.30	3.10	6.00	12.0	29.0	48.0	63.0	112	199
1500	M _B	[Nm]	2.20	3.00	5.80	11.0	28.0	47.0	61.0	1091)	1931)
1800	M _B	[Nm]	2.10	2.90	5.70	11.0	28.0	46.0	60.0 1)		
3000	M _B	[Nm]	2.00	2.80	5.30	10.0	26.0 1)	43.0 1)			
3600	M _B	[Nm]	2.00	2.70	5.20	10.0 1)					
Höchstschaltarbeit											
100	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1000	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1200	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1500	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	24.0 1)	36.0 1)
1800	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	36.0 1)		
3000	Q _E	[KJ]	3.00	7.50	12.0	24.0	18.0 1)	11.0 1)			
3600	Q _E	[KJ]	3.00	7.50	12.0	7.00 1)					
Übergangsschalthäufigkeit											
	S _{hü}	[1/h]	79.0	50.0	40.0	30.0	28.0	27.0	20.0	19.0	15.0
Massenträgheitsmoment						ii.	ı			ii.	ii.
	J	[kgcm²]	0.15	0.61	2.00	4.50	6.30	15.0	29.0	73.0	200
Masse											1
	m	[kg]	0.90	1.50	2.60	4.20	5.80	8.70	12.6	19.5	31.0

 $^{^{\}rm 1)}$ Im Bereich der Belastungsgrenze kann sich der Wert für die Reibarbeit Q_{BW} bis auf 40 % reduzieren.

_

Federkraftbremse

Bemessungsdaten mit reduziertem Bremsmoment

► Ansteuerung über Einweg- oder Brückengleichrichter

Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[MJ]	113	210	264	706	761	966	1542	2322	3522
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	11.0	14.0	20.0	21.0	37.0	53.0	32.0	47.0	264
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	13.0	10.0	17.0	19.0	22.0	30.0	20.0	100	120
Verknüpfzeit											
	t ₁	[ms]	24.0		37.0	40.0	59.0	83.0	52.0	147	384
Trennzeit											
	t ₂	[ms]	35.0	37.0	57.0	65.0	148	169	230	207	269

► Ansteuerung über Brücke-Einweggleichrichter

Ausführung												
			Haltestromabsenkung (Cold Brake)									
Baugröße												
			06	08	10	12	14	16	18	20	25	
Reibarbeit												
	Q _{BW}	[WJ]	113	210	264	706	761	966	1542	2322	3522	
Übererregungszeit												
	tü	[ms]		30	00		1300					
Min. Ausschaltzeit												
	t	[ms]		9	00		3900					
Ansprechverzug												
Verknüpfen	t ₁₁	[ms]	12.0	22.0	35.0	49.0	61.0	114	83.0	126	304	
Anstiegszeit												
Bremsmoment	t ₁₂	[ms]	14.0	16.0	30.0	45.0	37.0	65.0	52.0	269	138	
Verknüpfzeit												
	t ₁	[ms]	26.0	38.0	66.0	93.0	97.0	180	134	395	443	
Trennzeit												
	t ₂	[ms]	35.0	37.0	57.0	65.0	148	169	230	207	269	

► Die Ansprech- und Einfallzeiten der Bremse sind Richtwerte. Die Verknüpfzeit ist bei wechselstromseitigem Schalten um den Faktor 10 größer.

Bei maximalem Luftspalt erhöht sich die Trennzeit t_2 – je nach Bremse und Ansteuerung – bis auf das 4-fache der Trennzeit bei Nennluftspalt.

Lenze | V06-de_DE-08/2018 5.9 - 45

Zubehör

Federkraftbremse

Bemessungsdaten mit Standard-Bremsmoment

- ► Beim Bremsmoment und der Höchstschaltarbeit ist die Einheit für die Werte (100 ... 3600) r/min.
- ► Nicht aufgeführte Bremsmomente und Höchstschaltarbeiten bitte anfragen.

Baugröße											
			06	08	10	12	14	16	18	20	25
Leistungsaufnahme											
	P _{in}	[kW]	0.020	0.025	0.030	0.040	0.050	0.055	0.085	0.10	0.11
Bremsmoment											
100	M _B	[Nm]	4.00	8.00	16.0	32.0	60.0	80.0	150	260	400
1000	M _B	[Nm]	3.70	7.20	14.0	27.0	51.0	66.0	121	206	307
1200	M _B	[Nm]	3.60	7.00	14.0	27.0	50.0	65.0	118	201	300
1500	M _B	[Nm]	3.50	6.80	13.0	26.0	48.0	63.0	115	1951)	2911)
1800	M _B	[Nm]	3.40	6.70	13.0	26.0	47.0	61.0	112 1)		
3000	M _B	[Nm]	3.20	6.30	12.0	24.0	44.0 1)	57.0 ¹⁾			
3600	M _B	[Nm]	3.20	6.10	12.0	23.0 1)					
Höchstschaltarbeit											
100	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1000	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1200	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	80.0	120
1500	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	60.0	24.0 1)	36.0 1)
1800	Q _E	[KJ]	3.00	7.50	12.0	24.0	30.0	36.0	36.0 1)		
3000	Q _E	[KJ]	3.00	7.50	12.0	24.0	18.0 1)	11.0 1)			
3600	Q _E	[KJ]	3.00	7.50	12.0	7.00 1)					
Übergangsschalthäufigkeit											
	S _{hü}	[1/h]	79.0	50.0	40.0	30.0	28.0	27.0	20.0	19.0	15.0
Massenträgheitsmoment						ii.	ı			ii.	ii.
	J	[kgcm²]	0.15	0.61	2.00	4.50	6.30	15.0	29.0	73.0	200
Masse											
	m	[kg]	0.90	1.50	2.60	4.20	5.80	8.70	12.6	19.5	31.0

 $^{^{\}rm 1)}$ Im Bereich der Belastungsgrenze kann sich der Wert für die Reibarbeit Q_{BW} bis auf 40 % reduzieren.

Federkraftbremse

Bemessungsdaten mit Standard-Bremsmoment

► Ansteuerung über Einweg- oder Brückengleichrichter

Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[MJ]	85.0	158	264	530	571	966	1542	2322	3522
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	15	5.0	28	3.0	17.0	27.0	33.0	65.0	110
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	13.0	16.0	19.0	25	5.0	30.0	45.0	100	120
Verknüpfzeit											
	t ₁	[ms]	28.0	31.0	47.0	53.0	42.0	57.0	78.0	165	230
Trennzeit											
	t ₂	[ms]	45.0	57.0	76.0	115	210	220	270	340	390

► Ansteuerung über Brücke-Einweggleichrichter

Ausführung											
					Ha	ltestroma	bsenkung	(Cold Bra	ıke)		
Baugröße											
			06	08	10	12	14	16	18	20	25
Reibarbeit											
	Q _{BW}	[MJ]	85.0	158	264	530	571	966	1542	2322	3522
Übererregungszeit											
	tü	[ms]	300					1300			
Min. Ausschaltzeit											
	t	[ms]		9	00				3900		
Ansprechverzug											
Verknüpfen	t ₁₁	[ms]	16.0	25.0	31.0	48.0	33.0	58.0	80.0	102	154
Anstiegszeit											
Bremsmoment	t ₁₂	[ms]	14.0	27.0	21.0	43.0	49.0	64.0	109	157	168
Verknüpfzeit											
	t ₁	[ms]	30.0	52	2.0	90.0	82.0	122	189	259	322
Trennzeit											
	t ₂	[ms]	45.0	57.0	76.0	115	210	220	270	340	390

 Die Ansprech- und Einfallzeiten der Bremse sind Richtwerte. Die Verknüpfzeit ist bei wechselstromseitigem Schalten um den Faktor 10 größer.
 Bei maximalem Luftspalt erhöht sich die Trennzeit t₂ – je nach

Bei maximalem Luftspalt erhöht sich die Trennzeit t_2 – je nach Bremse und Ansteuerung – bis auf das 4-fache der Trennzeit bei Nennluftspalt.

5.9 - 47

Federkraftbremse

Bemessungsdaten mit erhöhtem Bremsmoment

► Beim Bremsmoment und der Höchstschaltarbeit ist die Einheit für die Werte (100 ... 3600) r/min.

 Nicht aufgeführte Bremsmomente und Höchstschaltarbeiten bitte anfragen.

Baugröße												
Buugioise			10	12	14	16	16	18	20	20	25	25
Leistungsaufnahme												
	P _{in}	[kW]	0.030	0.040	0.050	0.055	0.055	0.085	0.10	0.10	0.11	0.11
Bremsmoment						1		1	1			
100	M _B	[Nm]	23.0	46.0	75.0	100	125	200	315	400	490	600
1000	M _B	[Nm]	20.0	39.0	64.0	83.0	103	162	249	317	376	461
1200	M _B	[Nm]	20.0	39.0	62.0	81.0	101	158	244	309	367	449
1500	M _B	[Nm]	19.0	38.0	60.0	78.0	98.0	153	2371)	300 1)	356 1)	436 1)
1800	M _B	[Nm]	19.0	37.0	59.0	77.0	96.0	150 ¹⁾				
3000	M _B	[Nm]	17.0	34.0	55.0 1)	71.0 1)	89.01)					
3600	M _B	[Nm]	17.0	33.01)								
Höchstschaltarbeit												
100	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	80.0	80.0	120	120
1000	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	80.0	80.0	120	120
1200	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	80.0	80.0	120	120
1500	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	60.0	24.0 1)	24.0 1)	36.0 ¹⁾	36.01)
1800	Q _E	[KJ]	12.0	24.0	30.0	36.0	36.0	36.0 1)				
3000	Q _E	[KJ]	12.0	24.0	18.0 1)	11.0 1)	11.0 1)					
3600	Q _E	[KJ]	12.0	7.001)								
Übergangsschalthäufigkeit												
	S _{hü}	[1/h]	40.0	30.0	28.0	27.0	27.0	20.0	19.0	19.0	15.0	15.0
Massenträgheitsmoment					1		1			1		
	J	[kgcm²]	2.00	4.50	6.30	15.0	15.0	29.0	73.0	73.0	200	200
Masse					I.	ı		ı	ı	I.	ı	ı
	m	[kg]	2.60	4.20	5.80	8.70	8.70	12.6	19.5	19.5	31.0	31.0

 $^{^{1)}\,\}text{Im}$ Bereich der Belastungsgrenze kann sich der Wert für die Reibarbeit Q_{BW} bis auf 40 % reduzieren.

► Ansteuerung über Einweg- oder Brückengleichrichter

Baugröße												
			10	12	14	1	.6	18	2	0	2	5
Reibarbeit												
	Q _{BW}	[MJ]	198	353	253	563	241	578	1596	580	2465	1409
Ansprechverzug												
Verknüpfen	t ₁₁	[ms]	10.0	16.0	11.0	22.0	17.0	24.0	46.0	17.0	77.0	38.0
Anstiegszeit												
Bremsmoment	t ₁₂	[ms]	19.0	25	5.0	30	0.0	45.0	10	00	12	20
Verknüpfzeit												
	t ₁	[ms]	29.0	41.0	36.0	52.0	47.0	69.0	146	117	197	158
Trennzeit												
	t ₂	[ms]	109	193	308	297	435	356	378	470	451	532

Federkraftbremse

Bemessungsdaten mit erhöhtem Bremsmoment

► Ansteuerung über Brücke-Einweggleichrichter

Ausführung												
						Haltestro	omabsen	kung (Co	old Brake)		
Baugröße												
			10	12	14	1	.6	18	2	.0	2	5
Reibarbeit												
	Q_{BW}	[MJ]	198	353	253	563	241	578	1596	580	2465	1409
Übererregungszeit												
	tü	[ms]	30	00				13	300			
Min. Ausschaltzeit												
	t	[ms]	90	00				39	900			
Ansprechverzug												
Verknüpfen	t ₁₁	[ms]	24.0	27.0	17.0	41.0	21.0	60.0	69.0	17.0	123	85.0
Anstiegszeit												
Bremsmoment	t ₁₂	[ms]	44.0	43.0	37.0	55.0	37.0	113	148	100	190	270
Verknüpfzeit												
	t ₁	[ms]	68.0	70.0	54.0	97.0	57.0	173	217	334	313	355
Trennzeit												
	t ₂	[ms]	109	193	308	297	435	356	378	470	451	532
Ausführung												
							Überer	regung				
Baugröße												
			10	12	14	1	.6	18	2	20	2	5
Reibarbeit												
	Q _{BW}	[MJ]	264	706	761	96	56	1542	23	322	35	22
Übererregungszeit												
	tü	[ms]	30	00				13	300			
Min. Ausschaltzeit												
	t	[ms]	90	00	3900							
Ansprechverzug												
Verknüpfen	t ₁₁	[ms]	29.0	54.0	31.0	70.0	46.0	86.0	103	55.0	171	135
Anstiegszeit												
Bremsmoment	t ₁₂	[ms]	53.0	87.0	68.0	93.0	83.0	160	222	319	266	430
Verknüpfzeit												

82.0

53.0

[ms]

[ms]

141

99.0

117

163

141

129

168

246

151

325

160

374

167

437

184

565

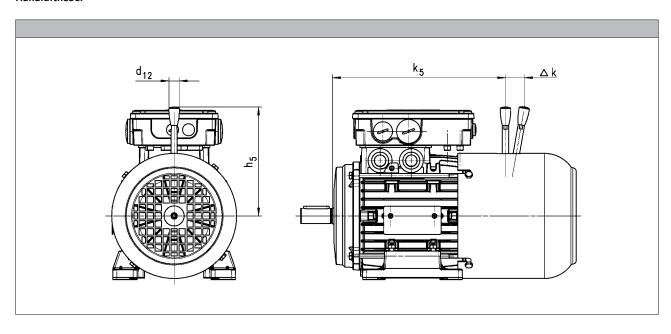
204

 Die Ansprech- und Einfallzeiten der Bremse sind Richtwerte. Die Verknüpfzeit ist bei wechselstromseitigem Schalten um den Faktor 10 größer.

 t_2

Trennzeit

Bei maximalem Luftspalt erhöht sich die Trennzeit t_2 – je nach Bremse und Ansteuerung – bis auf das 4-fache der Trennzeit bei Nennluftspalt.


Lenze | V06-de_DE-08/2018 5.9 - 49

5 9

Federkraftbremse

Handlüfthebel

	Bremse				
		k ₅	Δk	h ₅	d ₁₂
		[mm]	[mm]	[mm]	[mm]
063	06	178	29	107	13.0
071	06	199	29	107	13.0
071	08	197	27	136	13.0
080	08	221	27	136	13.0
080	10	232	28	132	13.0
090	08	228	27	136	13.0
090	10	239	28	132	13.0
100	10	305	28	132	13.0
100	12	307	37	161	13.0
112	12	320	37	161	13.0
112	14	323	41	195	24.0
132	14	386	41	195	24.0
152	16	389	55	240	24.0
160	16	505	55	240	24.0
100	18	509	59	279	24.0
100	18	540	59	279	24.0
180	20	546	74	319	24.0

Folgende Kombinationen mit Handlüfthebel und Motoranschluss in gleicher Lage sind nicht möglich:
• Steckverbinder HAN mit Anschluss in Lage 1

- Inverter motec
- Klemmenkasten der Motorengrößen 071, 080, 090 für Bremse und Rückführung (M□□MA BR/BS/BA/BI)

Rückführungen

Für die Drehzahl- und Positionserfassung stehen je nach Applikation die nachfolgenden Resolver, Inkremental- oder Absolutwertgeber zur Verfügung.

Resolver

Der ständergespeiste Resolver mit zwei um 90° versetzten Ständerwicklungen und einer Läuferwicklung mit Transformatorwicklung kann sowohl die Drehzahl als auch die Rotorlage erfassen. Die Rotorlage bleibt bei einem Spannungsausfall erhalten.

Die Drehstrommotoren mit Resolver k\u00f6nnen nicht f\u00fcr drehzahlabh\u00e4ngige Sicherheitsfunktionen in Verbindung mit dem Sicherheitsmodul SM 301 eingesetzt werden.

Produktschlüssel				
				RS1
Genauigkeit				
			[']	-10 10
Absolute Positionierung				
				1 Umdrehung
Max. Eingangsspannung				
DC	U _{in,max}		[V]	10.0
Max. Eingangsfrequenz				
	f _{in,max}		[kHz]	4.00
Übersetzungsverhältnis				
Ständer / Läufer		± 5 %		0.30
Läuferimpedanz				
	Z _{ro}		[Ω]	51 + j90
Ständerimpedanz				
	Z _{so}		[Ω]	102 + j150
Impedanz				
	Z _{rs}		[Ω]	44 + j76
Min. Isolationswiderstand				
bei DC 500 V	R		[MΩ]	10.0
Polpaarzahl				
				1

Lenze | V06-de_DE-08/2018 5.9 - 51

Rückführungen

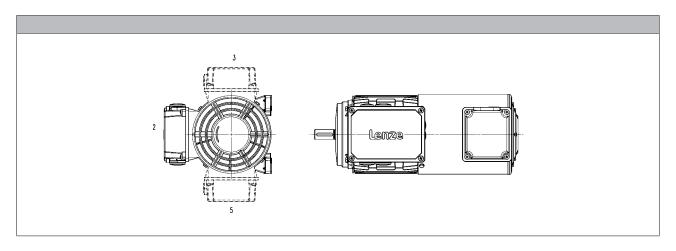
Inkremental- und SinCos-Absolutwertgeber

Inkrementalgeber können nur zur Drehzahlerfassung, nicht aber zur Drehzahlregelung eingesetzt werden. Es ist eine Referenzfahrt nötig, um später eine Positionierung zu ermöglichen.

Absolutwertgeber können die Drehzahl, die Rotorlage und die Maschinenposition mit einer sehr hohen Auflösung erfassen. Sie werden zur Positionierung von dynamischen Applikationen verwendet, eine Referenzfahrt ist nicht nötig.

Die Drehstrommotoren mit Inkrementalgebern oder SinCos-Absolutwertgebern können nicht für drehzahlabhängige Sicherheitsfunktionen in Verbindung mit dem Sicherheitsmodul SM 301 eingesetzt werden.

Geberart										
				HTL-Inkre	emental		тт	SinCos- Absolut- wert		
Produktschlüssel										
			IG128-24V- H	IG512- 24V-H	IG1024- 24V-H	IG2048- 24V-H	IG512- 5V-T	IG1024- 5V-T	IG2048- 5V-T	AM1024- 8V-H
Gebertyp										
										Multi- turn
Impulse										
			128	512	1024	2048	512	1024	2048	1024
Ausgangssignale										
				HTL TTL						
Schnittstellen				ı						ı
			A, B-Spur		Д	۸-, B-, N-Spu	r & invertie	rt		Hiperface
Absolute Umdrehung										ı
						0				4096
Genauigkeit				ı						I
		[']	-22.5 22.5			-2 .	2			-0.8 0.8
Min. Eingangsspannung										
DC	U _{in,min}	[V]		8.0	00			4.75		7.00
Max. Eingangsspannung				ı			ı			1
DC	U _{in,max}	[V]	26.0		30.0			5.25		12.0
Max. Stromaufnahme										1
	I _{max}	[A]	0.040 0.15					0.080		
Grenzfrequenz							I			ı
	f _{max}	[kHz]	30.0		160			300		200



Fremdlüfter

Im Betrieb mit Bemessungsdrehmoment bei niedrigen Drehzahlen (< 20 Hz) rotiert der Eigenlüfter nicht mehr schnell genug um eine ausreichende Kühlung des Motors zu gewährleisten. Um ein Überhitzen zu verhindern, ist ohne Fremdlüfter eine Drehmomentreduzierung des Motors notwendig.

Der Fremdlüfter kühlt den Motor gleichmäßig und unabhängig von der Motordrehzahl. Eine Drehmomentreduzierung ist nicht erforderlich und der Motor kann von 5 Hz bis zur Bemessungsfrequenz mit seinem Bemessungsdrehmoment betrieben werden.

► Der Fremdlüfterklemmenkasten ist in den Lagen 2, 3 oder 5 erhältlich.

Bemessungsdaten 50 Hz

Baugröße	Phasenzahl	Schaltungsart				
Motor						
			U _{N, AC}	P _N	I _N	m
			[V]	[kW]	[A]	[kg]
	1		220	0.034	0.15	
063	3	Δ	230	0.015	0.083	2.00
	5	Υ	400	0.015	0.040	
	1		230	0.041	0.18	
071	071	Δ	250	0.016	0.083	2.10
	3	Υ	400	0.016	0.048	
	1			0.036	0.16	
080	3	Δ	230	0.020	0.088	2.30
	5	Υ	400	0.020	0.051	
	1		230	0.038	0.19	
090	3	Δ	250	0.026	0.19	2.70
	3	Υ	400	0.036	0.11	
1 100 3		220	0.044	0.20		
	2	Δ	230	0.043	0.19	3.00
	5	Υ	400	0.043	0.11	

Lenze | V06-de_DE-08/2018 5.9 - 53

IE1-Drehstrommotoren MD

Zubehör

Fremdlüfter

Bemessungsdaten 50 Hz

Baugröße	Phasenzahl	Schaltungsart				
Motor						
			U _{N, AC}	P _N	I _N	m
			[V]	[kW]	[A]	[kg]
	1		230	0.050	0.23	
112	3	Δ	250	0.054	0.20	3.10
		Υ	400	0.054	0.11	
	1		230	0.095	0.42	
132	3	Δ		0.091	0.33	4.20
	, ,	Υ	400		0.19	
	1		230	0.22	0.97	
160	3	Δ	230	0.21	0.68	6.20
	5	Υ	400	0.21	0.39	
	1		230	0.22	0.97	
180	3	Δ	230	0.21	0.68	8.00
	5	Υ	400	0.21	0.39	

Bemessungsdaten 60 Hz

Baugröße	Phasenzahl	Schaltungsart				
Motor						
			U _{N, AC}	P _N	I _N	m
			[V]	[kW]	[A]	[kg]
063				0.018	0.047	2.00
071				0.020	0.047	2.10
080				0.028	0.053	2.30
090				0.047	0.11	2.70
100	3	Y	460	0.059	0.11	3.00
112				0.074	0.12	3.10
132				0.13	0.21	4.20
160				0.33	0.47	6.20
180				0.55	0.47	8.00

IE1-Drehstrommotoren MD

Zubehör

Temperaturüberwachung

Zum Schutz des Motors gegen Überhitzung stehen die nachfolgenden Temperatursensoren zur Verfügung. Die Temperatursensoren sind in den Wicklungen integriert. Der Einsatz eines zusätzlichen Motorschutzschalters wird empfohlen.

Thermokontakte TKO

Der Thermokontakt TKO (Thermokontaktöffner) ist ein Bimetallschalter. Der TKO überwacht die Motorwicklungstemperatur, bei zu hohen Temperaturen schaltet das Motorrelais. Der Motor ist vom Netz getrennt

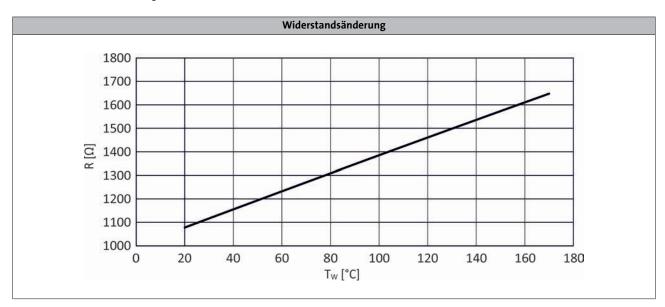
Funktion	Auslösetemperatur	Min. Rückschalttempe- ratur	Max. Rückschalttem- peratur	Max. Eingangsstrom	Max. Eingangsspan- nung
					AC
	Т	T _{min}	T _{max}	I _{in,max}	U _{in,max}
	-5 5				
	[°C]	[°C]	[°C]	[A]	[V]
Öffner	150	90.0	135	2.50	250

Kaltleiter PTC

Der PTC-Widerstand wird in Verbindung mit einem Auslösegerät betrieben. Wird der Motor zu heiß, kann der Motor mithilfe eines Schützes ausgeschaltet werden. Im Gegensatz zum Thermokontakt ist ein schnelles Wiedereinschalten möglich.

Funktion	Auslösetemperatur		Bemessungswiderstand		
		155 °C	-20 °C	140 °C	
	Т	R _N	R _N	R _N	
	-5 5				
	[°C]	[Ω]	[Ω]	[Ω]	
Sprunghafte Wider- standsänderung	150	550	30.0	250	DIN 44080 VDE 0660 Teil 303

Lenze | V06-de_DE-08/2018 5.9 - 55



Temperaturüberwachung

Temperaturfühler PT1000

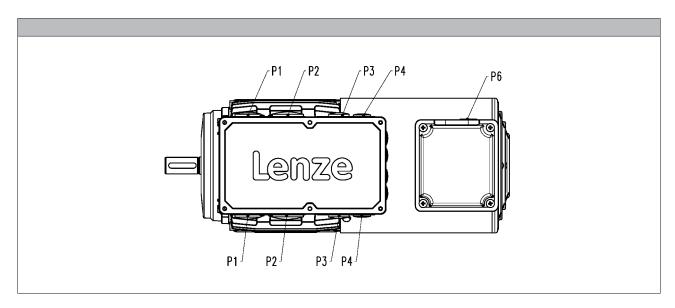
Die Temperaturfühler funktionieren als kontinuierlich veränderlicher Widerstand tendenziell ähnlich wie Kaltleiter. Der Widerstand steigt bei zunehmender Temperatur jedoch nur vergleichsweise langsam an. Dadurch kann ein Regler regelmäßig die Temperatur ermitteln und bereits frühzeitig eine Prozessbewertung vornehmen. So kann der Motor bereits vor dem Überhitzen abgeschaltet werden.

 Bei Speisung der Temperatursensoren mit einem Messstrom von 1 mA gilt der Zusammenhang zwischen Temperatur und gemessenem Widerstand im Diagramm.

5 a

5.9 - 56

Klemmenkasten


Die Drehstrommotoren sind für den Betrieb am konstanten Netz und am Inverter bestimmt.

Für den 50 Hz Betrieb sind die Motoren in Δ -Schaltung an 230 V oder in Y-Schaltung an 400 V zu betreiben.

Für den Inverterbetrieb ist die Eckfrequenz auf 87 Hz bei einer Bemessungsspannung von 400 V in Δ -Schaltung festgelegt worden.

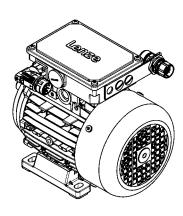
Der Standard-Anschluss findet über einen Klemmkasten statt. Darüber hinaus stehen für die schnelle Inbetriebnahme bzw. Wartung ICNund HAN-Steckverbinder zur Verfügung.

Anschlüsse

Motortyp		
Anbauten	M□□MAXX	M□□MABS
	M□□MABR	M□□MABI
	M□□MARS	M□□MABA
	M□□MAIG	
	M□□MAAG	

	P ₁	P ₂	P ₃	P ₄	P ₆	P ₁	P ₂	P ₃	P ₄	P ₆
	[mm]									
063	M16x1.5	M20x1.5								
071	MITOXI'2	MIZUXI.5								
080										
090	M20x1.5	M25x1.5				M25x1.5	M32x1.5			
100	MZUX1.5	1012381.3			M16x1.5			M20x1.5	M16x1.5	M16x1.5
112										
132	M25x1.5	M32x1.5								
160	M50x1.5	M16x1.5	M20x1.5	M16x1.5		M50x1.5	M16x1.5			
180	MOUXI.5	MIOXI.3				MOUXI.5	MIOXI.3			

Lenze | V06-de_DE-08/2018 5.9 - 57


Steckverbinder

Für die Drehstrommotoren stehen die Steckverbinder in den Ausführungen ICN, HAN und M12 (nur für Inkrementalgeber IG128-24V-H) zur Verfügung.

Steckverbinder ICN

Der Anschluss der Leistung, Bremse und Temperaturüberwachung erfolgt in einem Steckverbinder.

Der Anschluss an die Rückführung und dem Fremdlüfter wird jeweils über einen separaten Steckverbinder realisiert.

Anschluss der Leistung, Bremse und Temperaturüberwachung

Für den Leistungsanschluss des Steckverbinders ist ein max. Motorbemessungsstrom von 16 A zulässig.

Die Steckverbinder sind um 270° drehbar und mit einem Bajonettverschluss für SpeedTec-Steckverbinder ausgestattet. Da der Verschluss des Steckverbinders zusätzlich mit herkömmlichen Überwurfmuttern kompatibel ist, können vorhandene Gegenstecker mit Schraubverschluss problemlos weiterverwendet werden. Die Festlegung der Motorschaltung erfolgt im Klemmenkasten.

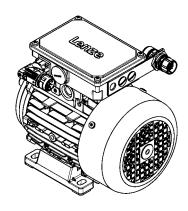
► ICN M23 6-polig

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	BD1/BA1	Bremse +/AC	
2	BD2 / BA2	Bremse -/AC	1 20 6
PE	PE	Schutzleiter	
4	U	Leistung Strang U	\\\^50\\\
5	V	Leistung Strang V	40 9
6	W	Leistung Strang W	

► ICN M23 8-polig

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	U	Leistung Strang U	
PE	PE	Schutzleiter	
3	W	Leistung Strang W	D T 3
4	V	Leistung Strang V	(CO O 4
Α	TB1/TP1 R1	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
В	TB2 / TP2 R2	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	BOA
С	BD1/BA1	Bremse +/AC	
D	BD2 / BA2	Bremse -/AC	

_



Steckverbinder ICN

Anschluss der Rückführung

Optional sind alle Gebersysteme (Ausnahme: IG128-24V-H) auch mit einem am Motorklemmenkasten befestigten ICN-Steckverbinder erhältlich, so dass eine besonders schnelle Inbetriebnahme möglich ist. Die Steckverbinder sind mit einem Bajonettverschluss ausgestattet, der zusätzlich mit herkömmlichen Überwurfmuttern kompatibel ist. Vorhandene Gegenstecker können so problemlos weiterverwendet werden.

Resolver

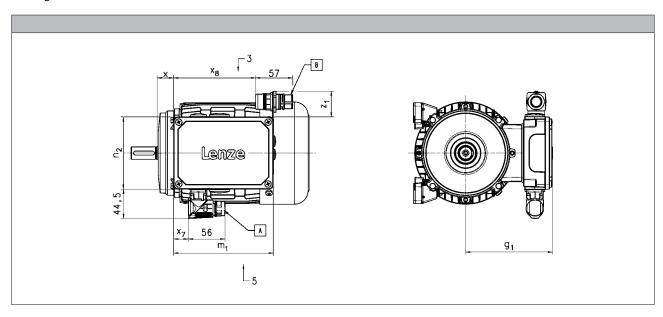
Steckerbe	legung		
Kontakt	Kontakt Bezeichnung Bedeutung		
1	+Ref	T f d i d.l	
2	-Ref	Transformatorwicklungen	
3	+VCC ETS	Versorgung: Elektronisches Typenschild	
4	+COS	Ständerwicklungen Cosinus	Code 0°
5	-COS	Standerwicklungen Cosinus	1 9 8
6	+SIN	Ständerwicklungen Sinus	
7	-SIN	Standerwicklungen Sinus	10 12 6
8			4 11 5
9		Nicht belegt	
10			
11	+PT1000/+KTY	Temperaturfühler PT1000/KTY	
12	-PT1000/-KTY	Temperaturiumer F11000/K11	

► Inkremental- und SinCos-Absolutwertgeber Hiperface

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	В	Spur B/+SIN	
2	A ⁻	Spur A invers/-COS	
3	Α	Spur A/+COS	
4	+U _B	Versorgung +	Code 20°
5	GND	Masse	
6	Z ⁻	Nullspur invers/-RS485	
7	Z	Nullspur/+RS485	2 2 22 6
8		Nicht belegt	3 A 11 5
9	B ⁻	Spur B invers/-SIN	
10		Nicht belegt	
11	+PT1000/+KTY	Tomporaturfühler PT1000 /VTV	
12	-PT1000/-KTY	Temperaturfühler PT1000/KTY	

Lenze | V06-de_DE-08/2018 5.9 - 59

Steckverbinder ICN


Abmessungen der Steckverbinder am Klemmenkasten

Folgende Lagen des Steckverbinders sind möglich:

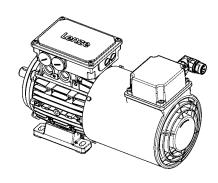
- Leistungsanschluss (A) in Lage 5 und Rückführungsanschluss (B) in Lage 3
- Leistungsanschluss (A) in Lage 3 und Rückführungsanschluss (B) in Lage 5

Bei folgenden Motoren ist nur der Rückführungsanschluss (B) in Lage 3 oder 5 erhältlich:

• Motorgröße 132 ... 180

Motortyp		
	M□□MAXX	M□□MABR
	M□□MARS	M□□MABS
	M□□MAIG	M□□MABI
	M□□MAAG	M□□MABA

	g ₁	x	m ₁	n ₂	x ₇	x ₈	z _{1, max}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	109	17	136	103	16	109	43
071	118	24	130	103	10	109	45
080	132	25					
090	137	29	152	121	23	125	41
100	147	36	132	121	25	123	41
112	158	38					
132	187	51	194	125	27	166	71
160	220	69					
180	239	75	253	152		200	65
200	239	77					
225	348	68	354	204		328	51



Steckverbinder ICN

Anschluss des Fremdlüfters

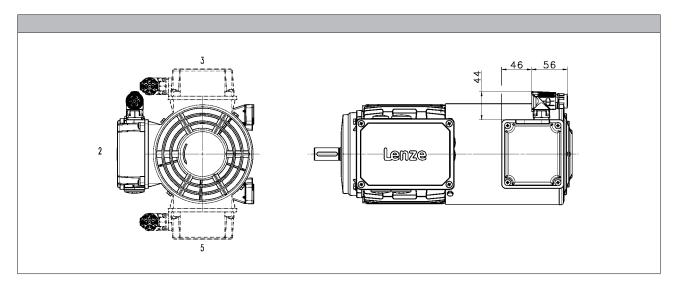
Optional ist der Fremdlüfter auch mit einem am Klemmenkasten des Fremdlüfters befestigten ICN-Steckverbinder erhältlich, so dass eine besonders schnelle Inbetriebnahme möglich ist. Die Steckverbinder sind mit einem Bajonettverschluss ausgestattet, der zusätzlich mit herkömmlichen Überwurfmuttern kompatibel ist. Vorhandene Gegenstecker können so problemlos weiterverwendet werden.

► Fremdlüfter 1-ph

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
PE	PE	Schutzleiter	. Ф
1	U1	Lüfter	6
2	U2	Luitei	5 0 1
3			
4			4
5		Nicht belegt	
6			á

► Fremdlüfter 3-ph

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
PE	PE	Schutzleiter	. Ф
1	U	Leistung Strang U	6
2		Nicht belegt	5 0 1
3	V	Leistung Strang V	
4		Nicht belegt	4
5		Nicht belegt	
6	W	Leistung Strang W	á


Lenze | V06-de_DE-08/2018 5.9 - 61

Steckverbinder ICN

Anschluss des Fremdlüfters

- ► Der Fremdlüfterklemmenkasten ist in den Lagen 2, 3 oder 5 erhältlich
- Zusätzlich kann der Deckel des Fremdlüfterklemmenkastens (inkl. Steckverbinder) bei Bedarf schrittweise um 90° gedreht werden.

5.9

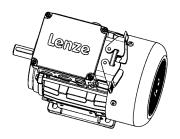
5.9 - 62 Lenze | V06-de_DE-08/2018

Steckverbinder M12

Anschluss des Inkrementalgebers IG128-24V-H

Dieser Inkrementalgeber ist im Standard mit einem etwa 0,5 m langen Kabelschwanz ausgestattet, an dessen Ende sich ein M12-Steckverbinder nach allgemeinem Industriestandard befindet.

Steckerbe	legung		
Kontakt	Bezeichnung	Bedeutung	
1	+U _B	Versorgung +	
2	В	Spur B	
3	GND	Masse	30 0 2
4	А	Spur A	40 10 1


Lenze | V06-de_DE-08/2018 5.9 - 63

Steckverbinder HAN

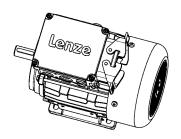
HAN 10 E

Bei dem Rechtecksteckverbinder HAN 10 E werden alle sechs Enden der drei Wicklungsstränge auf die Leistungskontakte ausgeführt. Die Festlegung der Motorschaltung erfolgt somit im Gegenstecker.

Steckerbe	legung	
Kontakt	Bedeutung	
1	Klemmenbrett: U1	
2	Klemmenbrett: V1	
3	Klemmenbrett: W1	
4	Bremse +/AC	
5	Bremse -/AC	/785\ (6 7 8 9 10 \
6	Klemmenbrett: W2	((紫))
7	Klemmenbrett: U2	
8	Klemmenbrett: V2	
9	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
10	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	

5 a

5.9 - 64 Lenze | V06-de_DE-08/2018



Steckverbinder HAN

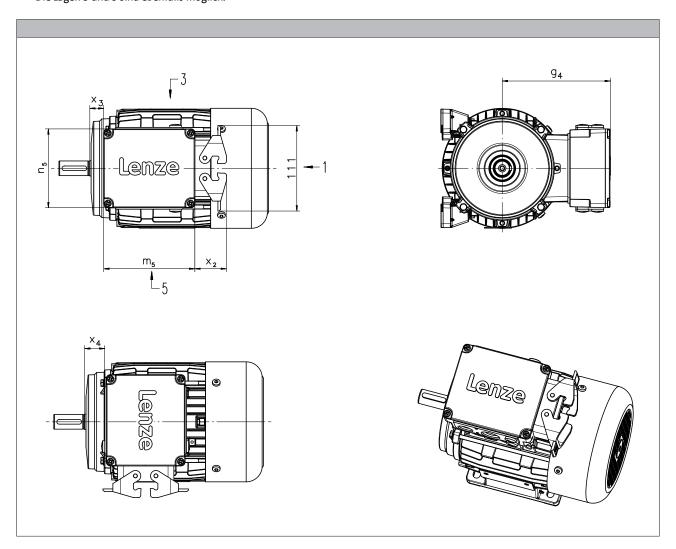
HAN modular

Der Steckverbinder ist je nach Motorbemessungsstrom mit zwei unterschiedlichen Leistungsmodulen verfügbar (16 A oder 40 A). Die Festlegung der Motorschaltung erfolgt im Klemmenkasten und muss vor der Inbetriebnahme geprüft werden.

► HAN modular 16 A

Steckerbo	elegung		
Modul	Kontakt	Bedeutung	
	1	Klemmenbrett: U1	
a	2	Klemmenbrett: V1	
	3	Klemmenbrett: W1	
b		Blindmodul	
	1	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY	
	2	Bremse +/AC	
	3	Bremse -/AC	
С	4	Gleichrichter: Schaltkontakt	
	5	Gleichhen: Schaftkontakt	a b c
	6	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY	

► HAN modular 40 A


Steckerb	elegung			
Modul	Kontakt	Bedeutung		
а	1	Klemmenbrett: U1		
	2	Klemmenbrett: V1		
	3	Klemmenbrett: W1		
b		Blindmodul		
С	1	Temperatursensor: TKO/PTC Temperaturfühler: +PT1000/+KTY		
	2	Bremse +/AC		
	3	Bremse -/AC		
	4	Gleichrichter: Schaltkontakt		
	5	Gleichhen: Schaltkontakt	a b c	
	6	Temperatursensor: TKO/PTC Temperaturfühler: -PT1000/-KTY		

Lenze | V06-de_DE-08/2018 5.9 - 65

Steckverbinder HAN

► Der Anschluss des Steckverbinders wurde in der Lage 1 dargestellt. Die Lagen 3 und 5 sind ebenfalls möglich.

Motortyp	
	M□□MAXX
	M□□MABR

	g ₄	m ₅	n ₅	x ₂	x ₃	x ₄
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
063	120			41	11	12
071	129		118 102		16	17
080	138	118			18	26
090	143				22	30
100	157				29	37
112	164				28	36
132 1)	233	120	180	47	48	18
160	248	120			72	42

 $^{^{1\!)}}$ Der Anschluss des Steckverbinders in Lage 3 oder 5 ist bei der Motorbauform B5 nicht möglich.

_

IE1-Drehstrommotoren MD

Zubehör

Lenze | V06-de_DE-08/2018 5.9 - 67

IE1-Drehstrommotoren MD

Zubehör

5 a

5.9 - 68

Lenze SE Hans-Lenze-Straße 1 D-31855 Aerzen= Telefon: +49 (0)5154 82-0= Fax: +49 (0)5154 82 28 00

www.Lenze.com

